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High-Order Mode-Coupling Theory for the Colloidal Glass Transition
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A theoretical approach is developed to derive a hierarchy of mode-coupling equations for the dynamics
of concentrated colloidal suspensions, which improves the prediction of the colloidal glass transition. Our
derivation is based on a matrix formalism for stochastic dynamics and the resulting recursive expressions
for irreducible memory functions. The 1st order truncation of the generalized mode-coupling closure
recovers mode-coupling theory, whereas its 2nd and 3rd order truncations provide corrections. The
predictions of the transition volume fraction and Debye-Waller parameter for the hard-sphere colloidal
system improve with the increasing mode-coupling order and compare favorably with experimental
measurements.
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The key predictions of mode-coupling theory (MCT) are
the ergodic-to-nonergodic transition and associated dy-
namic scaling [1–3]. These predictions have been sup-
ported by numerical simulations of simple liquids and
scattering measurements of colloidal suspensions, which
are often described as a many-body Brownian system with
pairwise interactions. Because of its simplicity and the
wealth of experimental investigations, an assembly of
spherical colloidal particles has been an ideal system for
demonstrating dynamic slowdown and the glass transition
both experimentally and theoretically [4].

In the standard projection operator formalism, the co-
herent intermediate scattering function Fk�t� is described
by the generalized Langevin equation with a memory
kernel, which is a bilinear density correlation function or
four-point correlation function. The Gaussian factorization
scheme decomposes the bilinear memory kernel into a
product of two linear correlation functions. The simple
closure gives a nonlinear equation for the density correla-
tion, which describes the dynamic feedback effect between
the strength of density fluctuations and the friction applied
to these fluctuations [3]. The feedback mechanism explains
the formation of local cages formed by neighboring parti-
cles as the density (volume fraction �) increases. The
relaxation predicted by MCT consists of the � process
and � process, corresponding to the formation and the
breakup of cages, respectively. At a critical volume frac-
tion, the colloid particles are permanently trapped in local
cages and Fk�t� has a nonzero long-time plateau,
limt!1Fk�t� � fkSk, where Sk is the structure factor, and
fk is known as the nonergodic parameter or the Debye-
Waller parameter. The ergodic-to-nonergodic transition
predicted by MCT is often identified as the ideal glass
transition and has been supported by experiments and
computer simulations [5–7].

The enormous success of MCT has inspired theorists to
improve the accuracy of its predictions and extend the
range of its applicability. However, such theoretical im-
provements prove to be challenging. The mean-field nature
of the ideal MCT overestimates the strength of the non-
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linear feedback and does not fully account for the hopping
events which are more frequent for finite size cages [8,9].
These hopping events destroy the plateau predicted by
MCT and eventually restore ergodicity. As a result, the
MCT transition volume fraction for a hard-sphere solution,
��1� � 0:525, is smaller than the experimental transition
point at �E � 0:58 by 10% [3,5]. To improve MCT pre-
dictions, we need to systematically incorporate multipar-
ticle correlations into the mean-field approach. Götze and
his coworkers proposed extensions to MCT, but the de-
tailed calculations are demanding and may require addi-
tional input [10]. Tokuyama et. al. captured the slow
relaxation and dynamic heterogeneities in supercooled
colloidal suspensions using a pair of coupled diffusion
equations, which were derived under different assumptions
from those of MCT [11]. Szamel proposed an extension to
MCT based on a high-order factorization scheme and
improved the predictions of the colloidal glass transition
point for the hard-sphere system [12]. Although his scheme
is an important extension beyond MCT, the derivation
involves projection operators which are not easy to com-
pute for higher order. Recently, MCT was formulated
without using the projection operator technique [13,14].
Along this line, we derived hydrodynamic equations for
four-point correlation functions, and were able to relate
non-Gaussian effects in bilinear density fluctuations to the
nonexponential decay in linear density correlation [14].

The goal of this Letter is to systematically derive high-
order mode-coupling equations and improve the prediction
of the colloidal glass transition density. Our calculations
are based on a matrix formalism of stochastic dynamics
and the resulting recursive expressions. To begin, we use
the linear variable A1 and its products A1A1, A1A1A1, etc.,
to construct an orthogonal basis set fAig normalized by
Ki;j 	 hA�

i Aji � hA�
i Aii�i;j, by the Gram-Schmidt method

[15,16]. The normalized correlation function for Ai is
defined by Ci�t� 	 hA�

i exp�Dt�AiiK

1
i or equivalently

Ĉi�z� 	 hA�
i �zI
D��
1�AiiK


1
i in the Laplace domain,

where D is the propagation operator. The inversion of the
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D matrix is simplified by sorting the basis set ele-
ments of fAig into the block tridiagonal form D�;� 	

hA�
�DA�i � D�;���;� � D�;��1��;��1, which defines

the coupling scheme represented by a coupling tree in
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Ref. [17]. For colloidal systems, the relevant linear variable
is the collective density, n ~k�t� � 
N

l�1 exp�
i ~k~rl�t��, where

N is the number of colloid particles, ~k is the wave vector,
and ~rl�t� is the position of particle l at time t. The complete
basis set is
8>>><
>>>:

n1� ~k� � n ~k

n2� ~k1; ~k2� � n ~k1
n ~k2


 hn ~k1
n ~k2

n�~kiN

1S
1

k n ~k

n3� ~q1; ~q2; ~q3� � n~q1n~q2n~q3 
 hn~q1n~q2n~q3n
�
~k
iN
1S
1

k n ~k 
 hn~q1n~q2n~q3n
�
2�
~k1; ~k2�i �K


1
22 �

~k1; ~k2; ~k
0
1; ~k

0
2� � n2� ~k

0
1; ~k

0
2�

� � � � � �

; (1)
where Ki;j is the susceptibility matrix, Ki;j 	 hnin
�
j i �

Ki;i�i;j, � in (X � Y) indicates the summation over the
repeated indices of the wave vectors in quantities X and
Y, and the time dependence for each mode is omitted for
simplicity. To avoid overcounting, the sequences of wave
vectors are ordered as ( ~k1 > ~k2) and ( ~q1 > ~q2 > ~q3). The
translational invariance requires the summation of the
wave vector for each mode be the same, ~q1 � ~q2 � ~q3 �
~k1 � ~k2 � ~k. The Smoluchowski operator for the N-body
colloidal system is D � D0
l@=@~rl�@=@~rl 
 � ~Fl�, where
D0 is the diffusion coefficient of a noninteracting particle
and ~Fl is the force applied to the particle. According to the
N-ordering approximation scheme [16], the resulting ki-
netic matrix Di;j 	 hniDn�j i is block tridiagonal in the
large N limit, Di;j � Di;i�i;j �Di;i�1�j;i�1. The natural
choice for constructing mode-coupling approximations is
a set of irreducible functions, which decay slower than the
corresponding correlation functions. In the Laplace do-
main, the irreducible correlation functions are related to
each other by the recursive expression [17]

Ĉ ir
i �z� 	 �zI� �ir

i 
 M̂i�z��

1

� fzI� �ir
i ��

ir
i � M̂ir

i �z��
1�ir
i g


1; (2)

where the ith order irreducible eigenfrequency is

�ir
i � �i 
Di;i
1K


1
i
1;i
1�

ir
i
1Di
1;iK


1
i;i

� �i 
Di;i
1K

1
i
1;i
1��i
1


Di
1;i
2K

1
i
2;i
2�� � � � � ��Di
2;i
1K


1
i
1;i
1�

�Di
1;iK

1
i;i (3)

with �i 	 
Di;iK

1
i , and the ith order irreducible memory

kernel is

M̂ ir
i �z� � Di;i�1K


1
i�1;i�1Ĉ

ir
i�1�z�Di�1;iK


1
i;i : (4)

These expressions are the basis for deriving dynamic equa-
tions and applying mode-coupling closures. In comparison
with the standard projection approach, our derivation is
transparent and easy to generalize. Instead of projecting
onto nonlinear modes, the matrix structure introduces a
natural framework of generating the hierarchy coupling
scheme. The recursive relations explain the need for irre-
ducible functions and provide a simpler tool than irreduc-
ible operators. In an earlier application to the East model,
we established a connection between Andersen’s diagram-
matic expansion and our mode-coupling tree and derived
several high-order corrections to the MCT approximations
[17,18].

In the following, we use the matrix formalism to derive
the MCT memory kernel and its 2nd order/3rd order ex-
tensions. The 1st order normalized correlation function is
related to the coherent intermediate scattering function by
C1� ~k; t� � Fk�t�=Sk. From Eqs. (2)–(4), Ĉ1� ~k; z� is written
as

Ĉ 1� ~k; z� �
�
n1� ~k�

1

z
D
n�1� ~k�

�

�

�
z�

�1� ~k�

1� �
1
1 � ~k�M̂ir

1 � ~k; z�

�

1
; (5)

where �1� ~k� is the 1st order eigenfrequency, �1� ~k� � !k 	

k2=Sk, and M̂ir
1 � ~k; z� is the 1st order irreducible memory

kernel, M̂ir
1 � ~k; z� � D1;2 �K


1
2;2 � Ĉ

ir
2 �z� �D2;1 �K


1
1;1 . The

diagonal approximation [16] simplifies M̂ir
1 � ~k; z� to

M ir
1 �

~k; t� �
X
~k1>~k2

� ~k1� ~k2; ~k

jD1;2� ~k; ~k1; ~k2�j2Cir
2 �

~k1; ~k2; t�

K22� ~k1; ~k2�NSk
;

(6)

which is a general equation to evaluate viscosity. Apply-
ing the Gaussian factorization scheme Cir

2 �
~k1; ~k2; t� �

C1� ~k1; t�C1� ~k2; t� to Eq. (6), recovers the standard mode-
coupling memory kernel

Mir
1 �

~k; t� �
X
~k1>~k2

n20Sk1Sk2
NSk

�� ~k � ~k1�ck1

� � ~k � ~k2�ck2�
2C1� ~k1; t�C1� ~k2; t�; (7)

where the Kirkwood approximation is used for the three-
particle distribution function in D1;2� ~k; ~k1; ~k2�. The original
MCT was derived from Newtonian dynamics, whereas
colloid particles follow Brownian dynamics. A key differ-
ence between the two dynamics is the role of irreducible
functions in the long-time behavior of stochastic systems
[17,19]. As demonstrated here and shown by several au-
thors earlier, the standard MCT memory function can be
recovered when Gaussian factorization is applied to the 1st
1-2
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order irreducible memory kernel instead of the memory
kernel. Although the short time correlations are different
for the two dynamics, MCT predicts the same glass tran-
sition point and fk value for colloids and liquids with the
same pairwise interaction potential. Experimentally, the
MCT predictions are found to be more reliable for
Brownian dynamics than for Newtonian dynamics.

As demonstrated in earlier work [3], applying the facto-
rization scheme to high-order irreducible memory kernels
improves the prediction of MCT. We evaluate Ĉ

ir
2 �z� using

the same procedure as for Ĉ
ir
1 �z�. From Eqs. (2)–(4), we

obtain the diagonal four-point irreducible correlation func-
tion,

Ĉ ir
2 �

~k1; ~k2;z��
�
z�

�ir
2 �

~k1; ~k2�

1� ��ir
2 �

~k1; ~k2��

1M̂ir

2 � ~k1; ~k2;z�

�

1
;

(8)

where the 2nd order irreducible eigenfrequency is

� ir
2 �

~k1; ~k2� � �2� ~k1; ~k2� 
D2;1�NSk�
1�1D1;2K

1
2;2

� !k1 �!k2 ; (9)

and the 2nd order irreducible memory kernel is Mir
2 �t� �

D2;3 �K

1
33 � Cir

3 �t� �D3;2 �K

1
22 . The combined use of the

diagonal approximation, the Kirkwood approximation, and
the Gaussian factorization scheme leads to a new closure,
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Mir
2 �t��

X
l1;p1;f ~qig

n20Sqp2Sqp3
NSkl1

�� ~kl2 � ~qp2
�cqp2

�� ~kl2 � ~qp3
�cqp3 �

2�~qp1 ;
~kl1
C1�q1;t�C1�q2;t�C1�q3;t�;

(10)

where l1; l2 � 1; 2, p1; p2; p3 � 1; 2; 3, and the summation
over f ~qig is constrained by ( ~q1 > ~q2 > ~q3) and ~q1 � ~q2 �
~q3 � ~k1 � ~k2 � ~k. The multiple summations over the
wave vectors f ~qig in Eq. (10) quickly increase the difficulty
of numerical calculations. To avoid this difficulty, we
substitute Eq. (7) into Eq. (10) and obtain a simplified
expression

M ir
2 �

~k1; ~k2; t� � Mir
1 �

~k1; t�C1� ~k2; t� �Mir
1 �

~k2; t�C1� ~k1; t�:

(11)

The underestimation due to the mixing of the 1st order and
2nd order expressions in Eq. (11) compensates for the
overestimation of the dynamic feedback by the MC clo-
sures in Eqs. (7) and (10). We also expect the difference
between the two expressions becomes negligible as the
mode-coupling order increases.

The derivation of the 3rd order MCT equation is straight-
forward but tedious. Here we present the final result for the
diagonal six-point irreducible correlation function using
Eqs. (2)–(4) and the same approximations for Ĉir

2 �z�,
Ĉ ir
3 � ~q1; ~q2; ~q3; z� �

�
z�

�ir
3 � ~q1; ~q2; ~q3�

1� ��ir
3 � ~q1; ~q2; ~q3��


1M̂ir
3 � ~q1; ~q2; ~q3; z�

�

1
; (12)
where �ir
3 � ~q1; ~q2; ~q3� � !q1 �!q2 �!q3 and the 3rd or-

der irreducible memory kernel is

M ir
3 � ~q1; ~q2; ~q3; t� � Mir

1 � ~q1; t�C1� ~q2; t�C1� ~q3; t�

�Mir
1 � ~q2; t�C1� ~q1; t�C1� ~q3; t�

�Mir
1 � ~q3; t�C1� ~q1; t�C1� ~q2; t�: (13)

By extrapolating Eqs. (11) and (13) to higher orders, we
obtain

M ir
i �f

~klg; t� �
Xi
l�1

Mir
1 �kl; t�

Yi
j�1��l�

C1�kj; t�; (14)

which can be used as a generalized MCT closure. This
compact form decomposes the high-order irreducible
memory kernel into terms consisting of the 1st order
functions and can be viewed as an simplified factorization
scheme for multipoint memory functions. Compared to the
full expression, Eq. (14) achieves similar convergence at
reduced computational cost.

The glass transition point in colloids is determined by
the appearance of a nonzero long-time plateau in Fk�t�. To
test the accuracy of our prediction of the colloidal glass
transition, we numerically compute the Debye-Waller pa-
rameters, fk � limt!1C1�k; t�, for the hard-sphere system.
The long-time limit of Eq. (5) leads to limt!1M1�k; t� �
!2

kfk=�1
 fk�. The ith order self-consistent equation of fk
are derived by substituting the asymptotic limits of C1�k; t�
and Mir

1 �k; t� into the recursive expression for Cir
i �t� in

Eqs. (2)–(4) and the MC closure for Mir
i �t� in Eq. (14).

For example, the closure for Mir
2 �t� in Eq. (11) gives the

2nd order MCT prediction of fk,

fk
1
fk

�
Sk

192"�

Z 1

0
dk1

Z k�k1

jk
k1j
dk2

k1k2
k5

��k2�k21
k22�nck1

��k2�k22
k21�nck2�
2

�
Sk1Sk2fk1fk2

fk1fk2 �
�!k1

�!k2
�2

!2
k1
�1
fk1 �


1�!2
k2
�1
fk2 �


1

; (15)

which recovers the standard MCT expression in the limit of
fk ! 1. The derivation of the 3rd order equation is
straightforward and is not included due to length restric-
tions. Following the numerical method in Ref. [7], we
discretize the integration in Eq. (15) with the grid resolu-
tion of d�k � 0:4 in the range of 0:2 � k1d, k2d � 39:8
and jk
 k1j � 0:2d
1 � k2 � k� k1 
 0:2d
1, where d
is the diameter of the colloid particle. The numerical
solution of f�k� is zero at low density and jumps to a
1-3
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FIG. 1. Debye-Waller parameters at the ergodic-to-nonergodic
transition point. The length unit is the diameter of colloidal
particles. The dashed line is from Götze’s idealized MCT, ��1� �
0:525. The dot-dashed line is from our 2nd order MCT, ��2� �
0:545. The solid line is from our 3rd order MCT, ��3� � 0:553.
The symbols are the experimental data by van Megen et al. [5].
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nontrivial solution at the ergodic-to-nonergodic transition
point. The volume fractions at the predicted transition
points are: ��1� � 0:525 from the standard MCT, ��2� �

0:545 from the 2nd order solution, and ��3� � 0:552 from
the 3rd order solution. These predictions converge with
increasing mode-coupling order and compare favorably
with the observed colloidal glass transition at �E � 0:58.

The Debye-Waller functions at the predicted transition
points are plotted in Fig. 1 along with the experimental data
[5] at � � 0:563. The experimentally measured fk curves
depend strongly on the volume fraction and would not
yield a meaningful comparison with the MCT predictions
if the same volume fraction is used, because the predicted
transition point is different. Instead, the comparison should
be calibrated by the distance to the transition point ��


��i��=��i� so that the observed and predicted dynamics
scale accordingly. As shown in Fig. 1, the predicted fk
functions at the MCT transition points agree well with the
experimental fk at the colloidal glass transition point. This
observation supports the use of the distance to the transi-
tion point as the scaling parameter instead of the density or
temperature. The relatively small variations of fk with
increasing mode-coupling order indicate that MCT is a
convergent theory and can be systematically improved.

In conclusion, the matrix formalism allows us to sys-
tematically derive high-order generalizations of Götze’s
MCT and provides convergent predictions of the Debye-
Waller parameter and the nonergodic transition density.
Further developments of this formalism will lead to several
possible applications, including dynamic scaling relations
[7], non-Gaussian effects in bilinear modes [14,20–22],
and the phase diagrams for the colloidal systems with the
square-well potential and the Yukawa potential [23–25].
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