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We investigate heavy-hole spin relaxation and decoherence in quantum dots in perpendicular magnetic
fields. We show that at low temperatures the spin decoherence time is 2 times longer than the spin
relaxation time. We find that the spin relaxation time for heavy holes can be comparable to or even longer
than that for electrons in strongly two-dimensional quantum dots. We discuss the difference in the
magnetic-field dependence of the spin relaxation rate due to Rashba or Dresselhaus spin-orbit coupling for
systems with positive (i.e., GaAs quantum dots) or negative (i.e., InAs quantum dots) g factor.
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Spin physics has become one of the most rapidly devel-
oping branches of condensed matter physics. Spin physics
is very important, not only from a fundamental point of
view, but also for the fabrication of novel electronic de-
vices for the experimental realization of quantum compu-
tation, and for the development of spin electronics
(spintronics) [1]. Quantum dots (QDs) are the most attrac-
tive candidates for these applications because of their
reduced dimensionality, leading to long-lived spin states
and allowing single spin manipulation [2].

Recent experiments [3–5] show that electrons in QDs
have a long spin relaxation time (up to 20 ms [5]) and it is
now possible to prepare a single electron spin state with a
well-defined orientation, read the spin state out, and store
the information about the spin orientation for a long time
[5]. There are two main spin relaxation mechanisms for
electron spins in QDs: that due to the electron-phonon
interaction [6–9] and that due to the hyperfine interaction
with surrounding nuclear spins [10–12]. Since the valence
band has p symmetry, the hyperfine interaction of holes
with lattice nuclei is suppressed with respect to that of the
conduction band (electrons). This has led to an increased
interest in hole spins as carriers of long-lived quantum
information. It was shown that in thin quantum wells
(QWs) the hole spin relaxation is slower than that in the
bulk case [13,14]. Nevertheless, the hole spin relaxation
time is several orders of magnitude smaller than that for
electrons. This is due to the fact that, in addition to existing
spin-orbit (SO) couplings for electrons due to bulk inver-
sion asymmetry (BIA) (Dresselhaus spin-orbit (DSO) cou-
pling [15]) and structure inversion asymmetry (SIA) (the
Rashba spin-orbit (RSO) coupling [16]) there is strong SO
coupling between the heavy-hole (HH) and light-hole (LH)
subbands [17].

Very recently, investigation of hole spin relaxation in
QDs was reported [18,19]. In these works only one SO
mechanism was considered, the SO coupling between HHs
and LHs. It was shown that the hole spin relaxation time in
QDs is longer than that in QWs but still shorter by several
orders of magnitude than that for electrons in QDs.
Furthermore, it was found that SO coupling between
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HHs and LHs is negligible for two-dimensional (2D)
QDs if the energy splitting between the HH and LH sub-
bands is much larger than the level spacing in those sub-
bands [19]. Up to now this case has not been investigated,
though it is very important for the realization of coherent
spin states with a spin relaxation time longer than that for
electrons. In this case, other SO coupling mechanisms
(RSO and DSO couplings) become significant.

In this Letter, we study HHs confined to a QD in a
perpendicular magnetic field. We consider the three main
SO coupling mechanisms: RSO, DSO, and SO coupling
between the HH and LH subbands. An effective
Hamiltonian for 2D HHs is derived. We study the spin
relaxation and decoherence of the system induced by the
interaction of HHs with phonons.

From the two-band Kane model, the Hamiltonian for the
valence band of III–V semiconductors is given by [20]

Hbulk � HLK �
�
�
J ��; (1)

where HLK is the Luttinger–Kohn Hamiltonian [21], � is
due to BIA, � � �so=�Eg � �so�, �so is the split-off gap
energy, Eg is the band gap energy, J � �Jx; Jy; Jz� are 4�
4 matrices corresponding to spin 3=2, z � Pz�P2

x � P2
y�,

and x, y are given by cyclic permutations. The last term
in Eq. (1), caused by SO interaction of the conduction and
valence bands, is DSO coupling for the valence band [for
the conduction band, the DSO coupling is given by [15]
�� ��, where � � ��x; �y; �z� is the vector of Pauli
matrices]. The magnetic field induces a Zeeman splitting,
which is described by the following term [22]: HZ �
�2��BB � J� 2q�BB � J , where � and q are the
Luttinger parameters [22] and J � �J3x; J

3
y; J

3
z �. For 2D

asymmetric QWs, due to SIA along the growth direction,
there is an additional SO term, the RSO term, which in the
two-band model is given by [23,24] �RP� E � J, where
�R is the RSO coupling constant and E is an effective
electric field along the growth direction.

We consider a [001]-grown 2D system. Because of
confinement along the growth direction, the valence band
splits into a HH subband with Jz � �3=2 and a LH sub-
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band with Jz � �1=2 [17]. If the splitting of HH and LH
subbands is large, we describe the properties of HHs and
LHs separately, using only the 2� 2 submatrices for the
Jz � �3=2 and Jz � �1=2 states, respectively. The HH
submatrices have the property that ~Jx � ~Jy � 0 and ~Jz �
3
2�z (see Ref. [25]). For such a system and low tempera-
tures only the lowest HH subband is significantly occupied.
In this case, we consider HHs only. In the framework of
perturbation theory [20], using Eq. (1) and taking into
account the Zeeman energy, the RSO, and DSO term, the
effective Hamiltonian for HHs of a QD with lateral con-
finement potential U�x; y� is given by

H �
1

2m
�P2
x � P2

y� �U�x; y� �HHH
so �

1

2
gzz�BBz�z;

(2)

where m is the effective HH mass, gzz is the component of
the g factor tensor along the growth direction, and

HHH
so � i����P

3
� � ��P

3
��

� ����P�P�P� � ��P�P�P�� (3)

is the SO coupling of HHs, which is due to the SO coupling
between LH and HH subbands, SIA (the first term), and
BIA (the second term). The first term in Eq. (3) is the RSO
coupling [23,24] and the second term is the DSO coupling.
Here, � � 3�0�RhEzi=2m0�, � � 3�0�hP

2
zi=2m0��,

�� � ��x � i�y�=2, P� � Px � iPy, m0 is the free elec-
tron mass, �0 is the Luttinger parameter [22], hEzi is the
averaged effective electric field along the growth direction
of a QD, and � is the splitting of LH and HH subbands.
The splitting between HH and LH subbands �� d�2,
where d is the QD height. Comparing Eq. (3) with the
SO coupling term for electrons, we find that for a QD with
the characteristic lateral size l, the ratio hHel

soi=hH
HH
so i �

�l=d�2. Thus, for strongly 2D QDs (l� d), the SO cou-
pling of HHs can be less than that for electrons.

Without the SO interaction (� � � � 0), the spectrum
of a QD Hamiltonian with parabolic lateral confinement
can be found using a canonical transformation of the
Hamiltonian [26]. For circularly symmetric QDs with os-
cillator frequency !0 U�x; y� � m!2

0�x
2 � y2�=2� in a

perpendicular magnetic field, the energy spectrum and
wave functions of HHs are given by [8] En1n2"�#� �

@!��n1�1=2��@!��n2�1=2��@!Z=2, jn1n2 " �#�i �

�n1�q1
�����������������
m!�=@

p
��n2�q2

�����������������
m!�=@

p
�j " �#�i, where n1, n2 �

0; 1; 2; . . . , !� � �!c=2 are the hybrid frequencies,

 �
������������������������
!2

0 �!
2
c=4

q
, !c � jejB=mc is the cyclotron fre-

quency, !Z � gzz�BB=@ is the Zeeman frequency, q1
and q2 are new coordinates in the transformed phase space
[26], and �n�q� are oscillator functions. We only consider
low-lying levels. For definiteness, we assume that B> 0
and gzz > 0, then the ground state is the spin-up state
j00 "i. At low B, the next level is E00#, which is Zeeman
split from the ground state level, and at high B, levels En0"
07680
are close to the ground state level (since !� ! 0 as B!
1). Therefore, there are crossings of levels En0" with E00#

at !Z � n!�.
We now take the SO coupling of HHs into account. The

spectral problem for H can be solved in the framework of
perturbation theory [8]. The SO coupling influences the
wave functions more than the energy spectrum (since the
energy corrections due to HHH

so are only second order).
Thus, SO coupling leads to mixing of spin-up and spin-
down states. The RSO and DSO terms differ by symmetry
in momentum space [8,27] and hence mix different states:
the state j00 "i mixes with j03 #i [E03# � E00" � @�3!� �
!Z�] due to RSO and with the states j01 #i [E01# � E00" �
@�!� �!Z�] and j12 #i due to DSO coupling. In turn,
j00#i mixes with j30"i [E30" � E00# � @�3!� �!Z�] due
to RSO and with j10 "i [E10" � E00# � @�!� �!Z�] and
j21"i due to DSO coupling. Again, we only consider the
case B> 0, since the physical properties of the system are
independent of the sign of B [8]. In this case, !� > j!Zj
and the mixed state levels cross (at !Z � !� and !Z �
3!�) for positive HH g factor (!Z > 0) but not for gzz <
0. Therefore, for gzz > 0 (e.g., GaAs QDs [25]), there is
strong spin mixing of the states at these points and the SO
term (3) leads to anticrossings of the corresponding levels
[8] (see inset in Fig. 1). Strong mixing of spin-up and spin-
down states and an anticrossing at !Z � !��!Z � 3!��
are due to only DSO (RSO) coupling. For gzz < 0 (e.g.,
InAs QDs [28]), the levels E00" and E10# (E00" and E30#) just
cross each other at !Z � !��!Z � 3!��, since there is
no coupling between the corresponding states.

In the following we study spin relaxation induced by
phonon-HH interactions only. The coupling between HHs
and phonons with mode q� (q is the phonon wave vector,
and the branch index � � L; T1; T2 for one longitudinal
and two transverse modes) is given by [6,20]

Uph
q��r��

�����������������
@

2$s�qV

s
F�qz�eiqkr

�

�
eAq�� i

��
a�
b
2

�
q �dq��

3

2
bqzd

q�
z

	

; (4)

where qk � �qx; qy�, a and b are the constants of the
deformation potential, and the other parameters are the
same as for the electron-phonon interaction operator (see
Ref. [8]).

We consider a single-particle QD, in which a HH can
occupy one of the low-lying levels. As mentioned above,
with increasing B some energy levels with the same spin
orientation cross the upper Zeeman-split ground state level
and we should study the relaxation of an n-level system,
the first n� 1 levels have the same spin and the nth level
has the opposite spin orientation. In the framework of
Bloch–Redfield theory [29], the Bloch equations of HH
spin motion for such a system in the interaction represen-
tation are given by

h _Szi � �ST � hSzi�=T1 � R�t�; (5)
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FIG. 1 (color online). Spin relaxation rate 1=T1 of HHs (solid and dashed lines) and electrons (dotted line) in a GaAs (a) and an
InAs (b) QD (d � 5 nm, l0 �

���������������
@=m!0

p
� 30 nm, and T � 0:1 K) due to DSO (solid line) and RSO (dashed line) coupling (� � �).

For a GaAs QD (a), m � 0:14m0 [30], gzz � 2:5 [25], �=@3 � 28 eV $A3 [31], and � � 40 meV [13,18]; for an InAs QD (b), m �
0:115m0 [32], gzz � �2:2 [28], �=@3 � 130 eV $A3 [33], and � � 150 meV. We note that T2 � 2T1. Inset: Energy levels of HHs in a
GaAs QD relative to the ground state.
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h _Sxi � �hSxi=T2; h _Syi � �hSyi=T2; (6)

where R�t� � Wn1$nn�t� � �n�1
i�1Wni$ii�t�, $�t� is the den-

sity matrix, Wij is the transition rate from state j to state i,
ST is a constant [which has the value of hSzi in thermody-
namic equilibrium if R�t� � 0],

1

T1
� Wn1 �

Xn�1

i�1

Win;
1

T2
�

1

2T1
�

1

2

Xn�1

i�2

Wi1; (7)

where the pure dephasing (due to fluctuations along z
direction) is absent in the spin decoherence time T2 since
the spectral function is superohmic. As can be seen from
07680
Eq. (5), the spin motion has a complex dependence on the
density matrix and, in the general case, there are n� 1 spin
relaxation rates. However, in the case of low temperatures
(@qs� � T), when the phonon absorption becomes
strongly suppressed, solving the master equation, we find
that R�t� � 0; therefore, there is only one spin relaxation
time T1. In this limit, the last sum in Eq. (7) is negligible
and the spin decoherence time saturates, i.e., T2 � 2T1.

For brevity, we present only the probability W1n of
transition with phonon emission for the Zeeman-split
ground state which can be expressed as a sum of two terms
due to RSO and DSO couplings, respectively: W1n �
WR1n �W

D
1n, where
WR1n �
�2
@
3!7
Z

2802$6
�N!Z � 1�

�
!3

�

3!� �!Z
�

!3
�

3!� �!Z

�
2X
�

s�9
� e

�!2
Zl

2=2s2�I�7�; (8)

WD1n �
�2m2

@!3
Z

2402$4 �N!Z � 1�
X
�

s�5
� e

�!2
Zl

2=2s2�

�
f2I�3� � 2fj

�
!Zl
2s�

�
2
I�5� � j2

�
!Zl
2s�

�
4
I�7�

	
: (9)

Here N!��e@!=T�1��1, l �
��������������
@=m

p
, f � �!2

� �!2
��!�=�!� �!Z� �!�=�!� �!Z��, j � !�!�!�=�!� �

2!� �!Z� �!�=�2!� �!� �!Z��,

I�k� �
Z 20

0
d’

Z 0=2

0
d#sink#F2�!Z cos#=s��e!

2
Zl

2cos2#=2s2�

�
�eAq��2 �

!2
Z

s2�

��
a�

b
2

�
� � dq� �

3

2
b8zd

q�
z

	
2


:

In the case of parabolic confinement along the growth
direction of a QD, I�k� can be expressed in terms of error
functions [8]. As mentioned above, for gzz > 0, the SO
term (3) leads to level anticrossings at !Z � !� (due to
DSO) and !Z � 3!� (due to RSO). In this case, the
denominators 3!� �!Z in Eq. (8) and !� �!Z in the
expression for f should be replaced by sgn�3!� �!Z� ����������������������������������������������������
�3!� �!Z�2 � ��R=@�2

p
and sgn�!� �!Z� ��������������������������������������������������

�!� �!Z�2 � ��D=@�2
p

, respectively. Here �D �
2��ml�3!��!2

� �!2
�� and �R � 2

���
6

p
��ml!��

3 are the
level splittings at the anticrossing points.
Note that there is no interplay between RSO and DSO
couplings for HHs of a QD in perpendicular magnetic
fields, as is true also for electrons [7,8].

Figure 1 shows the dependence of the spin relaxation
rate 1=T1 for HHs in a GaAs [see Fig. 1(a)] and InAs [see
Fig. 1(b)] QD on a perpendicular magnetic field. The solid
(dashed) curve corresponds to the spin relaxation due to
RSO (DSO) coupling. In the case of a positive HH g fac-
tor (i.e., a GaAs QD), there are peaks in the relaxation
rate curve at !Z � !��!Z � 3!��, which are caused
by strong spin mixing at the anticrossing points due to
5-3
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DSO (RSO) coupling [8]. The half-width of the first peak
is �D=@ and that of the second peak is �R=@. Since, at
anticrossing points, !� � !�, the half-width of the
peak, which is caused by the DSO coupling, is much
larger than that due to the RSO coupling (in our case,
�R � 4 neV and �D � 1:5 �eV). In the case of a nega-
tive HH g factor (i.e., an InAs QD), there is no mixing
of spin-up and spin-down states of the crossing levels,
therefore, the field dependence of the relaxation rate is
monotonic.

From Eqs. (8) and (9) it can be shown that at low
temperatures and at low magnetic fields (B< 0:5 T) the
relaxation rate due to RSO (DSO) coupling is �B9��B5�.
Therefore, the field dependence of T1 due to DSO coupling
of HHs in a QD is the same as for electrons [5,6,8], but that
due to RSO coupling is quite different. This qualitative
difference in the field dependence of the spin relaxation
can serve to provide information about the leading SO
interaction term at low B.

Let us consider the quantitative difference between the
spin relaxation of electrons and HHs. For simplicity, we
consider DSO coupling only. It can be shown that at low B
(B � 0:1 T) the ratio of the HH spin relaxation time and
that for electrons Tel

1 is given by

T1
Tel
1

�
16

9

�
gel
gzz

�
4
�
mel

m

�
4
�
l0
d

�
4
�2; (10)

where gel and mel are the electron g factor and effective
mass, respectively. Usually the g factor and the effective
mass of an electron are less than those of a HH and the spin
relaxation time Tel

1 for electrons is much longer than for
HHs. However, for strongly 2D QDs (l0 � d), the spin
relaxation time for HHs can be comparable to, or even
longer than, that for electrons. For the GaAs QD consid-
ered here (� � 0:18), T1 for HHs is comparable to that for
electrons [7,8] [see Fig. 1(a)]. Now consider the InAs QD,
for which gel is larger than for the GaAs QD and the energy
gap is narrow (� � 0:48). We find that the spin relaxation
time for HHs is longer than for electrons [see Fig. 1(b)].

Since � and �� d2, the spin relaxation rate increases
with increasing confinement along the growth direction of
a QD and, as can be seen from Eqs. (8) and (9), with de-
creasing lateral confinement (with a decrease in the con-
finement frequency !0). As follows from Eq. (4), the HH
spin relaxes primarily due to piezoelectric phonons at low
B and due to deformational acoustic phonons at B> 1 T.

In conclusion, we have shown that due to the different
symmetries of the RSO and DSO terms in momentum
space, these terms lead to different behavior of the spin
relaxation: at low magnetic fields T1 � B�9 in the case of
RSO coupling and T1 � B�5 in the case of DSO coupling.
The field dependence of the spin relaxation rate is mono-
tonic for a system with a negative g factor (i.e., HHs in
InAs QDs), whereas for gzz > 0 (i.e., HHs in GaAs QDs)
the relaxation rate has peaks corresponding to level anti-
07680
crossings and the associated enhanced mixing of spin-up
and spin-down states at the anticrossings.
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