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Maxwell Equation for Coupled Spin-Charge Wave Propagation
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We show that the dissipationless spin current in the ground state of the Rashba model gives rise to a
reactive coupling between the spin and charge propagation, which is formally identical to the coupling
between the electric and the magnetic fields in the (2� 1)-dimensional Maxwell equation. This analogy
leads to a remarkable effect of fractionalization of spin packets (FSP) where a density packet can
spontaneously split into two counterpropagation packets, each carrying the opposite spin. In a certain
parameter regime, the coupled spin and charge wave propagates like a transverse ‘‘photon.’’ We propose
both optical and purely electronic experiments to detect the FSP effect.
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The generation and manipulation of spin current is
essential to the rapidly developing field of spintronics
[1]. For this purpose, the analogy between photonics and
spintronics greatly helped our conceptual developments,
and this analogy lead to the celebrated Das-Datta proposal
for a spin-field transistor [2]. However, earlier attempts to
realize this conceptual device were based on the rather
incomplete analogy between the electron spin and the
photon, and were plagued by many issues such as low
spin injection rate and the requirement of the ballistic
spin transport. Spin-optics analogies relating to Fresnel-
like formulas can be found in [3].

Recently, the remarkable phenomenon of the dissipa-
tionless spin current has been theoretically predicted [4,5].
An electric field Ek generates a spin current described by
the response equation

jij � �s�ijkEk (1)

where jij is the current of the ith component of the spin
along the direction j, �ijk is the totally antisymmetric
tensor in three dimensions, and the spin Hall conductivity
�s does not depend on impurities. Since both the spin
current and the electric field are even under the time
reversal, this equation describes a reactive response which
does not dissipate energy. One natural consequence of this
equation is the intrinsic spin Hall effect [4,5], which has
been recently observed experimentally in the hole doped
systems [6]. Another consequence is the dissipationless
spin current in the ground state [7]. In the above equation
(1), the electric field can be either externally applied, or can
be spontaneously generated in systems without inversion
symmetry. In a two dimensional electron gas, the confining
potential along the z direction breaks the inversion sym-
metry, and leads to a internal electric field Ez in the ground
state. According to Eq. (1), there is a spin current in the
ground state, jij � j0�ij, where �ij is the antisymmetric
symbol in two dimensions with i; j � x; y.

In this Letter, we shall show that the dissipationless spin
current in the ground state makes the analogy between
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photonics and spintronics formally exact. In (2� 1) di-
mensions, the electric field has two components, while the
magnetic field has only one component. If one identifies
them with the in-plane components of the spin density and
the charge density, respectively, the Boltzmann transport
equation for the coupled spin and charge wave is formally
the same as the Maxwell equation describing the electro-
magnetic fields, where the ‘‘speed of light’’ is given by the
Rashba coupling constant. This behavior is in sharp con-
trast to the conventional Boltzmann equation for the de-
coupled spin and charge dynamics in semiconductors,
where only purely diffusive, but no propagating motion is
predicted [8]. The photonic analogy helps our understand-
ing on how density gradient and time dependence can
generate spin density, and leads to many novel predictions.
We shall show that there is a parameter regime, reachable
experimentally, where the coupled spin-charge wave prop-
agates as a under-damped ‘‘photonic mode’’ leading to the
fractionalization of spin packets (FSP) effect, where a
density packet splits spontaneously into two counter-
propagating packets, each carrying the opposite spins.
This mechanism enables injection of spins and spin cur-
rents. The FSP mode is a nonequilibrium effect in the
absence of external electric field and as such, it is funda-
mentally different from the equilibrium spin Hall effect.
The Boltzmann transport equations for the Rashba model
and other models have been studied previously in the
diffusive region [9–11]. The coupled spin-charge wave
propagation is a new result of this work.

A spin 1=2 Hamiltonian which includes spin-orbit cou-
pling can be written in the following general form:

H �
p2

2m
� �i�p��i; i � x; y; z (2)

where �i�p� is a odd function of p, in order to preserve the
time reversal symmetry. This includes a wide range of
spin-orbit couplings, including 2D Rashba and
Dresselhaus couplings and the 3D spin splitting of the
conduction band in strained semiconductors [12]. The
phase space density distribution function nF�p; r; t� and
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the energy matrix �F�p; r; t� are 2� 2 matrices, and can be
decomposed as

nF�p;r;t��n�p;r;t��Si�p;r;t��i;

�F�p;r;t���s�p;r;t���iv�p;r;t��
i; i�x;y;z:

(3)
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In this Letter we consider the system in the absence of
external fields, such that �F�p; r; t� � p2=2m� �i�p��i.
The influence of electric and magnetic fields on the system
is described in a future longer publication [12]. The
Boltzmann equation reads
@nF�p; r; t�
@t

�
i
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(4)

where the right hand side is the collision term expressed in the relaxation time approximation, and neqF is the equilibrium
value of nF�p; r; t�. � is the momentum relaxation time. Although this approximation does not take into account the self-
energy effects, it turns out to be qualitatively and quantitatively correct, as we see from comparison with the solution
involving the self-energy in some special cases of spin-orbit coupling [9,10]. We trace out the matrix dependence of the
distribution function as well as that of the energy, and integrate the continuity and the current equations over the Fermi
volume [12]. After linearization, we obtain [12]
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(6)

where D �
hp2

Fi�
2m2 is the diffusion constant and � � e�

m is the mobility, and the carriers are electrons of charge �e. Aside
from the self-energy renormalizations, Eq. (6) gives the same result as [9,10] when particularized to the Rashba-spin-orbit
coupling. The last term in the spin continuity equation represents the spin relaxation due to Dyakonov-Perel (DP)
mechanism [13]. In the case of Rashba systems, the spin-orbit coupling is �i � ��ijzpj, � has the dimension of velocity,
and the continuity equations become (from now on we use @i � @=@ri and @t � @=@t)

@tn � D@2i n� ��liz@iS
l; @tS

k � D@2i S
k � ��kiz@in�

�����
D
�s

s
��kz@iS

i � @kS
z� �

1

�s
�Sk � �kzS

z� (7)
where ri � �x; y� (i � 1; 2) since charge and spin motion is
now confined entirely to the 2D plane. Within the current
microscopic approximation, the DP spin relaxation time is
given by ��1

s � �2m�
@
�2D; however, in the subsequent dis-

cussions, we shall treatD and �s as independent, phenome-
nological parameters. We want to mention that the terms
contained in the above equation can be obtain from pure
symmetry reasons from the form of the original spin-orbit
coupled Hamiltonian.

Let S� � �Sk; Sz�, � � x; y; z, k � x; y. We can write
the two dimensional vector Sk�r; t�, k � x; y in the most
general form as a sum of a longitudinal vector SkL�r; t� and a
transversal vector SkT�r; t�:

Sk � SkL � SkT ; @kSkT � 0; �ij@iS
j
L � 0: (8)

Substituting this decomposition into Eq. (7), we find two
sets of coupled equations:

@tn � D@2i n� ��ki@iS
k
T;

@tS
k
T � D@2i S

k
T � ��ki@in�

1

�s
SkT; @kS

k
T � 0

(9)

and
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Sz; �ij@iS

j
L � 0:

(10)

Hence the charge density couples only to the transverse
spin component, while Sz couples only to the longitudinal
spin component in a purely diffusive fashion [10]. In the
spin continuity equation of Eq. (9), we see that the � term
is nothing but the divergence of the dissipationless spin
current in the ground state jki � ��kin. We shall see that
this term plays the crucial role leading to the coupled spin-
charge propagation.

At this point we come to a remarkable realization that
the Boltzmann equation (9) for the coupled charge and
transverse spin transport is exactly the Maxwell’s equation
in (2� 1) dimensions. In order to facilitate the compari-
son, let us first focus on the large spin-orbit coupling limit,
where we neglect the D and the 1

�s
terms in Eq. (9). In (2�

1) dimensions, the source-free Maxwell equations are
given by
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@"F�" � j� � 0; (11)

��"#@�F"# � 0 (12)

where � � �0; x; y�. In (2� 1) dimensions, the magnetic
field has only one component, given by Bz � Fxy, and the
two components of the electric field are given by Ei � F0i.
If we make the identification n! Bz, SiT ! Ei, and �!
c, we see that the three Boltzmann transport equations in
Eq. (9) are exactly the three Maxwell equations in the
vacuum of (2� 1) dimensions, namely, the Faraday’s
law of induction, the Ampere-Maxwell law, and the
Gauss’s law. More generally, the 1

�s
SkT term can be inter-

preted as light propagation in a metallic media, with the
current density in the Ampere’s law given by the Ohm’s
law, and the D terms can be interpreted as due to light
diffusion in a random media.

In conventional theories without spin-orbit coupling, the
electron transport semiconductors are purely diffusive.
However, we see that in the limit of strong spin-orbit
coupling, there is a regime where a propagating, coupled
spin-charge wave mode is possible. If we neglect the
diffusion and the lifetime terms for the time being, we
find that the most general solution to the initial condition of
n�x; y; t � 0� � f�x� and SiT�x; y; t � 0� � 0 is given by

n�x; t� �
1

2
�f�x� �t� � f�x� �t��;

SyT�x; t� �
1

2
�f�x� �t� � f�x� �t��:

(13)

From these equations we see explicitly the FSP effect: an
initial density wave packet spontaneously splits into two
counter-propagating packets, each carrying the opposite
spin. This phenomenon can be elegantly interpreted in
the ‘‘photonic’’ language. In (2� 1) dimensions, the mag-
netic field is always pointing along the �ẑ direction. Since
the propagation vector k, being proportional to the
Poynting vector, is given by k / E� B, it uniquely de-
termines the direction of the transverse electric field.
Translating from the photonic language into the ‘‘spin-
tronic’’ language, we see that the mode propagating along
the �x̂ has spins along the �ŷ direction, while the mode
propagating along the �x̂ has spins along the �ŷ direction.
The split wave packets carries a spin current Jyx , which is a
reflection of the spin current in the ground state of the
Rashba model. For a simple estimate, � � 3� 104 m=s,
and hence the mode will cross a sample of 1 �m length in
30 ps. Considering that the spin coherence time in these
samples can be larger than 1 ns, it means that the propa-
gation time over 1 �m distance is well shorter than 30th
part of the spin relaxation time and can hence be very
useful for spin manipulation.

We now consider the more general situation including
diffusion and relaxation. We suppose that a one dimen-
sional stripe of charge density has been created, say by
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transient grating [14]. The initial density is given by
n�x; y; t � 0� � ��x�. The solution to the full equations
give Sz�x; t� � Sy�x; t� � 0 while Sy�x; t� is generated by
the spin-orbit coupling:

n�x; t� �
ZZ 1

�2(�2
i!�Dq2 � 1

�s

��!�!1��!�!2�
ei�!t�qx�d!dq;

(14)

Sy�x; t� �
ZZ 1

�2(�2
i�q

�!�!1��!�!2�
ei�!t�qx�d!dq

(15)

where !1, !2 are the characteristic frequencies of the
system:

!1;2 � i
�
Dq2 �

1

2�s

�



������������������������������
�2q2 �

1

�2�s�2

s
: (16)

We recognize the propagating mode inside the square root.
For momenta q > 1=2�s� both characteristic frequencies
contain real parts and hence describe propagating waves.
However, qmust not be as large as to cause damping due to
the term Dq2t. The condition for this Gaussian damping to
be small is Dq2�s < 1 for q� 1=�s�. Therefore, the con-
dition for the regime where a propagating mode could exist
is then given by

�>

�����
D
�s

s
: (17)

This condition can be satisfied in samples where � � 3�
104 m=s and D � 10�3 m2=s, with �s longer than 1 ns

[15]. In this case,
����
D
�s

q
� 103, much smaller than �. This

condition is not satisfied when DP relaxation is the only
mechanism for �s. However the theoretical DP relaxation
time is a rather poor approximation and many systems such
as assymetric quantum wells regularly beat it [15].
Moreover, if one theoretically introduces self-energy ef-
fects [9] in the coefficients of the Boltzman equation
above, the condition for the propagating mode can be
realized even in the realm of DP relaxation.

In the limit of very long �s ! 1 the integrals can be
solved exactly. We give the expression of Sy in this limit:

Sy�x; t� �
1

4
����
(

p
1������
Dt

p �e���t�x�2=4Dt � e���t�x�2=4Dt�: (18)

The propagating mode is �t
 x � 0 where either one of
the damping Gaussian exponentials becomes unity. The
spin symmetry is odd in x, the spins propagating in the
positive and negative x axis directions having opposite
polarization. Note that for diminishing spin-orbit coupling
�! 0 the spin density also vanishes, as it should. For
finite �s in a stationary phase-type approximation the
spin-density solution above gets multiplied by an exponen-
tial factor exp��t=2�s�. Impressively, both spin and charge
2-3



FIG. 1 (color online). Charge and spin density for �s � 1 ns, � � 3� 104 m=s and D � 10�3 m2=s. We see propagation over
distances of more than 100 �m. Inset: Charge and spin density in the diffusive regime, for small values of � (�s � 1 ns, � � 102 m=s,
and D � 10�3 m2=s) has the typical Gaussian decay.
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can propagate over distances well in excess of 100 �m and
for times well in excess of 10�s (the full time scale is not
plotted in Fig. 1).

We now propose several experiments to detect the FSP
effect. One could inject the density packet optically, and
detect the splitting of the density packet and the associated
spin orientation by optical Kerr rotation. One could also
detect the spin orientation through the circularly polarized
luminance from the recombination with the majority car-
riers. Alternatively, one could detect the propagation of the
density packet purely electrically, by a modified version of
the classic Haynes-Shockley experiment [16]. Figure 2
describes a narrow sample with light p doping. Two rec-
tifying metal-to-semiconductor point contacts are forward
and reverse biased, respectively, to serve as emitter and
collector electrodes. After turning on the emitter pulse, a
electron density packet is injected into the sample. In a
conventional Haynes-Shockley setup, the electron packet
would be swept to the collector electrode by a electric field.
In our case, no sweeping electric field is applied, but the
density packet will spontaneously split into two counter-
FIG. 2 (color online). A modified version of the classic
Haynes-Shockley experiment. A density packet injected by the
emitter spontaneously splits into two counter-propagating pack-
ets with opposite spin. Unlike the settings of the Haynes-
Shockley experiment, one of the two packets propagates to the
collector without experiencing a sweeping electric field. The
time delay between the injection pulse the collecting pulse gives
a purely electric determination of the Rashba spin-orbit coupling
constant.
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propagating packets with the opposite spin orientation,
with a velocity directly given by the Rashba coupling
constant �. When the right moving packet is captured by
the collector electrode, a voltage pulse is registered. From
the time delay and the shape of the voltage pulse, one can
determine the Rashba coupling constant and the diffusion
constant by purely electric means. This experiment illus-
trates the fact that the injected density pulse can take
advantage of the spin current in the ground state, and
propagate without any applied voltage.
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