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Self-Assembled Superlattice by Spinodal Decomposition during Growth
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We examine the dynamics of alloy growth by vapor deposition and bulk diffusion, predicting a new type
of self-organized growth. When material is deposited at a composition unstable against spinodal
decomposition, we find three distinct regimes depending on growth rate. Intermediate growth rates
lead to spontaneous formation of a superlattice with layers parallel to the surface. Slow growth leads to
more complex three-dimensional decomposition. For fast growth, the alloy composition remains uniform
near the surface, with a composition wave propagating up from the interface.
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There is intense interest in self-assembly of nanostruc-
tured materials. Besides the inherent interest of the physi-
cal processes involved, self-assembly holds promise for
technological applications. Recent years have witnessed
increasing success in the controlled self-assembly of quan-
tum dots, quantum wires, and superlattices [1–7].

Here we consider spinodal decomposition [8] as a
mechanism for structure formation. Spinodal decomposi-
tion in an alloy AxB1�x is the common tendency to phase
separate into A-rich and B-rich phases. Most work has
focused on semiconductor growth at relatively low tem-
perature, where the evolution occurs primarily by surface
diffusion rather than bulk diffusion. In this regime, spino-
dal decomposition is expected to lead to composition
modulation perpendicular to the growth direction [9,10]
(unless growth is by step flow [11,12]). We consider in-
stead a very different regime, where the evolution is domi-
nated by bulk diffusion and surface diffusion can be
neglected relative to bulk diffusion. We also consider
what systems are good candidates for showing this
behavior.

We find three distinct regimes of dynamical behavior,
depending upon the growth rate. Most interestingly, the
regime of intermediate growth rate leads to spontaneous
formation of a superlattice, with layers parallel to the
surface, as shown in Fig. 1(b). A linear stability analysis
shows that this planar superlattice formation is dynami-
cally stable. In this regime, the superlattice period is com-
parable to the equilibrium domain boundary width [8].
Thus the periodicity can easily be nanoscale and can be
controlled by varying the deposition rate and/or tempera-
ture. This apparently represents a new mechanism for self-
organized growth of nanoscale structures.

Slower growth leads to more complex three-dimensional
(3D) decomposition, perhaps resembling that predicted for
surface diffusion [9,10]. For faster growth, in contrast, the
alloy composition remains uniform near the surface. In this
case, composition modulation propagates from the sub-
strate toward the surface [Fig. 1(a)]. This is closely analo-
gous to the well-studied phenomenon of surface-directed
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spinodal decomposition [13,14], but with decomposition
initiated at the substrate rather than at the surface.

In our simulations, we assume a specific though rather
generic form for the free energy. (This is necessary because
the usual bulk continuum equations for spinodal decom-
position leave some ambiguity about the gradient term at
the surface.) The enthalpy of mixing of the A-B alloy is
taken to be

E �
1

2

1

V2
0

Z
c�r��1� c�r0��v�r; r0�drdr0; (1)

where r and r0 denote 3D positions, V0 is the atomic
volume, and c�r� is the local composition (fraction of A
atoms). The integral is over the solid and excludes the
vacuum region. The enthalpy of mixing is described by
the short-range A-B interaction:

v�r; r0� � he��r�r0�2=R2 ; (2)

where h is the interaction strength and R is the character-
istic range of the interaction. The free energy additionally
includes the entropic contribution �kT=V0�

R
�c lnc� �1�

c� ln�1� c��dr.
The specific form of v�r� is not important, only the range

and strength. The standard form for enthalpy of mixing
used in regular solution theory [8], E=N � 1

2Hc�1� c�, is
recovered here with H � �3=2V�1

0 R
3h. The positive en-

thalpy of mixing favors decomposition, while entropy
favors mixing. Entropy dominates at high T, while spino-
dal decomposition occurs for temperatures below kTc �
1
4H.

Because of the finite range of the interaction (2), large
composition gradients are unfavorable. In equilibrium, the
boundary between regions of different composition has a
finite thickness �, which increases with increasing tem-
perature and diverges at Tc [8]. In regular solution theory,
this effect is represented by a gradient term 1

2m�rc�
2 in the

free energy. This standard form is recovered here withm �

�3=2hR5=�2V0�.
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From the free energy above, we calculate �, the differ-
ence in chemical potential between A and B atoms:

��r� �
1

V0

Z �
1

2
� c�r0�

�
v�r� r0�dr0

� kTflnc�r� � ln�1� c�r��g: (3)

Since we assume that surface diffusion is negligible
relative to bulk diffusion, the concentration evolves as
@c=@t � Dr2�, where D is the mobility. The boundary
condition is zero normal diffusion at the surface (and at the
back surface of the substrate).

After scaling, the dimensionless evolution equation is

@c
@�s

� f�1 ~r2 ~�: (4)
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FIG. 1. Composition profiles along the growth direction for
different deposition rates. The substrate is to the left, and the
curves end at the growing surface on the right. The figure shows
two types of composition modulations. (a) At scaled deposition
rate f � 0:25, the composition modulations do not reach a
steady state. The propagation velocity of the composition mod-
ulations is smaller than the velocity of the growing surface. Thus,
the growing surface outruns the oscillations. At slower deposi-
tion rates (b) f � 0:05 and (c) f � 0:006 25, the composition
modulations reach a steady state.
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Here �s � zs=R, where zs is the position of the growing
surface; f � F=F0 is the scaled deposition rate, where
F � dzs=dt is the deposition rate; and the characteristic
deposition rate is F0 � 4kTcD=R. Also, ~r2 is the dimen-
sionless Laplace operator, scaled by R. The scaled chemi-
cal potential is

~���� � ��3=2
Z �

1

2
� c��0�

�
exp���� �0�2�d�0

�
T
4Tc

flnc��� � ln�1� c����g; (5)

with � � r=R.
For the simulations reported here, we choose a deposi-

tion composition cdep � 0:5 and temperature T � 0:88Tc.
Then in equilibrium, the material would decompose into
compositions c1 � 0:21 and c2 � 0:79. We choose a sub-
strate composition equal to c1. (We have also studied the
cases with cdep � 0:4 and 0.6, and the results show quali-
tatively the same features.) The substrate triggers spinodal
decomposition with a modulation normal to the substrate,
as shown in Fig. 1. We first address these one-dimensional
(1D) modulations, and then examine their 3D stability.

For fast growth, we find the behavior shown in Fig. 1(a).
Spinodal decomposition is initiated at the substrate, but the
growing surface outruns the composition modulation. The
composition remains uniform (c � cdep) near the growing
surface. We find that a composition wave propagates from
the substrate toward the surface at a velocity which is
independent of the growth rate. This is essentially the
same phenomenon as surface-directed spinodal decompo-
sition [13,14], except that here it is the substrate rather than
the surface that initiates the decomposition.

We have determined numerically that the critical growth
rate for this behavior at cdep � 0:5 and T � 0:88Tc is fc �
0:13. This growth rate corresponds to the velocity at which
the decomposition wave propagates in the uniform bulk.

For slower deposition rates (f < fc), the composition
modulations reach an oscillatory steady state, shown in
Figs. 1(b) and 1(c). The wavelength and the amplitude of
the composition modulations are shown in Fig. 2, plotted
against the inverse deposition rate f�1. Both the wave-
length and the amplitude of the modulation increase with
slower deposition. The composition modulation in fact
corresponds closely to the equilibrium profile for a system
constrained to have 1D modulation of the specified
periodicity.

To understand the physical origin of the oscillations, in
Fig. 3 we plot the composition profile at several successive
times. Figure 3(a) shows the evolution for the same slow
deposition rate as in Fig. 1(c). By the second or third time
interval shown, the B-rich layer near the surface has
reached its equilibrium composition c � 0:21, and the
layer is simply growing thicker with time. As the deposited
material decomposes, the excess A-rich material remains
near the surface, where it forms an A-rich surface layer.
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FIG. 3 (color online). Evolution of the composition profile
during growth, for growth rates (a) f � 0:006 25, and
(b) f � 0:1. At each successive time, the surface has advanced,
so the curve extends further to the right.
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FIG. 2 (color online). The lower curve shows the wavelength L
of the composition modulations, in units of the interaction
potential range R. One can see that the wavelength increases
with the inverse deposition rate f�1 (shown in units of
4kTcD=R). The upper curve shows the amplitude of composition
modulations as a function of the inverse deposition rate, f�1.
The two dashed lines separate the three different growth regimes
discussed in the text.
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As fresh material is deposited on the surface, B atoms
must diffuse through the A layer to the B layer below. This
process continues through the fourth time shown in
Fig. 3(a). However, as the A-rich surface layer grows
thicker, it becomes increasingly difficult for B atoms to
diffuse quickly enough to the subsurface B layer. Instead, a
new B layer forms at the surface, at which point further
growth of the subsurface B layer ceases. This explains why
the wavelength of the oscillation increases with decreasing
growth rate: for slow growth, there is enough time for
diffusion over a longer distance.

For faster deposition, the situation is more dynamic and
less clear-cut. This is shown in Fig. 3(b), where we plot the
composition profile at several successive times, for a rather
fast deposition rate [but not quite so fast that the growing
surface outruns the oscillations, as in Fig. 1(a)]. In this
case, the subsurface layers do not have time to reach their
final composition before a new layer forms at the surface.

(Spinodal decomposition via bulk diffusion can also give
interesting 1D evolution for a heteroepitaxial film, includ-
ing formation of subsurface alloy layers, even in the ab-
sence of a deposition flux. This has been studied in
particular for a B-rich surface layer when surface segrega-
tion favors an A-rich layer [15].)

It is striking that, during uniform continuous deposition,
the system automatically self-organizes to form a highly
ordered superlattice. However, to be useful, the order must
persist even in the presence of perturbations. We therefore
test the dynamical stability of the self-organized superlat-
tice growth. It is sufficient to consider the linear stability
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with respect to small perturbations, which can be expanded
in the form

c�r� � c�z� � cq�z�eiqx: (6)

Since the x direction can be any direction perpendicular to
the growth direction z, this analysis determines the full 3D
stability.

We use a small initial perturbation localized at the initial
surface, with a wave vector q parallel to the surface, and
amplitude cq0. We have found that cq decays exponentially
in the bulk. Thus, for the stability analysis, it is sufficient to
monitor cq at the growing surface.

Figure 4 shows the calculated instability growth rate,
G � d�lnjcq��s�j�=d�s, as a function of the dimensionless
wave number qR for several deposition rates f. Because of
the competition among the different length scales in our
model, the behavior of the growth rate vs the wave number
is complex. For f > fc (faster deposition rates) there are
no stable patterns even in one spatial dimension, as dis-
cussed above and illustrated in Fig. 1(a). For deposition
rates f < fc, Fig. 4 indicates that the 3D stability of the 1D
patterns is determined by the small q (long wavelength)
behavior. Even though the upper envelope of the growth
rate curves has a second maximum around qR � 0:4, the
corresponding growth rate value at this maximum is always
negative; i.e., perturbations decay rather than grow.

We numerically determined the instability growth rates
at long wavelength, as a function of deposition rate. We
found that the system is unstable against modulations cq
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FIG. 4 (color online). Growth rate �G � d�lnjcq��s�j�=d�s�
curves of a transverse perturbation for different deposition rates
(f) as a function of the dimensionless wave number qR. Our
detailed numerical investigations showed that, for intermediate
deposition rates (fst � 0:016< f < fc � 0:13), the 1D patterns
are stable in three dimensions.
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for deposition rates f < fst � 0:016, and is stable at faster
growth rates. Thus, for intermediate deposition rates fst <
f < fc, the 1D modulations are stable in three dimensions,
giving self-organized superlattice growth.

The regime for stable superlattice growth (Fig. 2) cor-
responds to wavelengths a few times the equilibrium
boundary thickness. Thus the absence of lateral instability
is probably related to the fact that the decomposition is
already constrained by composition-gradient effects, and
lateral decomposition would further increase the gradient.

Finally, we consider what systems and conditions are
good candidates for finding self-organized superlattice
growth. For bulk diffusivity D and surface diffusivity Ds,
we define a length scale Ls � Ds=D. For variations in �
over length scales 
 Ls, the response will be dominated
by bulk diffusion. Variations over length scales � Ls (in a
region that includes the surface) will be dominated by
surface diffusion. The gradient term effectively suppresses
spinodal decomposition on length scales much below the
equilibrium interface thickness �, and the layer thickness
for stable self-organized growth is also of order �.
Therefore, the assumption that bulk diffusion dominates
will be valid whenever �
 Ls.

We can always guarantee that this condition is satisfied,
by working at temperatures sufficiently close to Tc, where
� becomes arbitrarily large. This requires slow growth and
gives a weak modulation with a long periodicity. The
modulation amplitude of the composition could be in-
creased by postannealing at lower T.

To achieve shorter wavelengths and allow more rapid
growth, it is desirable to find a system where the activation
energy for bulk diffusion is small, relative to the growth
temperature. Diffusion is a thermally activated process,
and the energy barrier is reduced at the surface relative to
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the bulk. For semiconductors at typical growth tempera-
tures, the activation energy is many times larger than kT, so
the reduced energy barrier corresponds to strongly en-
hanced diffusivity at the surface. If the activation energy
for bulk diffusion is not too much larger than kT, then there
will not be such a strong enhancement of surface diffusiv-
ity, giving shorter Ls. Another approach, instead or in
addition, would be to suppress surface diffusion by the
use of surfactants [16].

In conclusion, we have examined the growth of a spino-
dally unstable system evolving by bulk diffusion. We find
three distinct growth regimes, one of which corresponds to
dynamically stable self-organized growth of a planar su-
perlattice. The superlattice compositions and periodicity
can be controlled, suggesting the possibility of interesting
applications.
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