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Dissipative Particle Dynamics Simulations of Polymer Chains: Scaling Laws
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Dissipative particle dynamics simulations of several bead-spring representations of polymer chains in
dilute solution are used to demonstrate the correct static scaling laws for the radius of gyration. Shear flow
results for the wormlike chain simulating single DNA molecules compare well with average extensions
from experiments, irrespective of the number of beads. However, coarse graining with more than a few
beads degrades the agreement of the autocorrelation of the extension.
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Modeling realistic polymer motion in the microscopic or
mesoscopic level in equilibrium and simple flow configu-
rations has been a continuous challenge in terms of (a) the
choice of appropriate polymeric interactions and (b) the
simulation method itself. Brownian dynamics (BD) simu-
lations [1] have shown a good comparison [2] with experi-
ments on DNA molecules in shear flow [3]. Molecular
dynamics (MD) has been used for comparison with worm-
like chain (WLC) [4] and slip length measurements for
sheared films [5] but the number of beads and the time
scale interval is much shorter than the times for gathering
experimental data (of the order of seconds [3]). Here we
employ dissipative particle dynamics [(DPD), described
below] to investigate the static scaling law for several
model chains and the response of the WLC under shear.
This mesoscopic method has already been used to model
macromolecules in a variety of equilibrium and nonequi-
librium configurations [6–10].

In the motion of ideal chains, the bonds—characterized
by linear elastic forces—are not restricted from passing
through each other, crossings known as phantom collisions.
For real chains in good solvents these unphysical collisions
are eliminated by the constraint of self-avoiding walks on
preset lattice paths. This dramatically affects their scaling
properties. Our treatment of chains places no explicit con-
straints on the interaction between chain segments. Since it
is usually assumed that in physical systems self-avoidance
is a consequence of excluded volume and restricted bond
rotation, we attempt to exclude phantom collisions by
appropriate choices of intrapolymer interactions. Our
chain potentials contain no angle dependence and therefore
only the excluded volume is available for the task of self-
avoidance. Since the detection of phantom collisions is
computationally complex, their frequency is measured in-
directly by checking the scaling exponents of the radius of
gyration, Rg, with respect to chain size. For a chain of M
beads it is defined by hRg

2i � h 1
M �M

i�1�Ri � Rcm�
2i, where

Ri is the position vector of each bead, Rcm the position
05=95(7)=076001(4)$23.00 07600
vector of the center of mass of the chain, and h�i denotes
time averaging. Statistical scaling arguments show that
Rg / �M� 1��. The static exponent � is 0.5 for ideal
chains (in any space dimension d [11]), and for real chains
is � � 3

d	2 � 0:6 (Flory’s formula), which has been veri-
fied by light scattering experiments [11]. Previous DPD
simulations involved linear chains [6,7] and manipulation
of solvent characteristics [8] to obtain the 0.6 exponent
without appropriate interbead forces.

In 1992 Hoogerbrugge and Koelman [12] introduced the
DPD method, which combines some of the detailed de-
scription of the MD with the ability to describe larger time
and length scales. The DPD method describes blocks of
molecules moving together in a coherent fashion subject to
soft potentials and governed by predefined collision rules.
Hence, this method is very attractive for the computer
simulation of polymer solutions, since by employing the
bead-spring model of polymer chains we can formulate
and compare a variety of realistic conservative interbead
forces. In contrast to Langevin-equation methods, such as
BD, the hydrodynamic resistance is accounted for implic-
itly by the DPD solvent particles which behave as a
Newtonian fluid [13].

As a particle-based mesoscopic method, DPD considers
N particles, each having mass mi, whose momenta and
position vectors are governed by Newton’s equations of
motion. For a typical particle i, vi �

dri
dt , Fi � mi

dvi
dt ,

where vi its velocity, ri its position, and Fi its net force.
The interparticle force Fij exerted on particle i by particle j
is composed of conservative (Fcij), dissipative (Fdij), and
random (Frij) components. Hence, the total force on par-
ticle i is given by Fi � �i�jFcij 	 Fdij 	

Frij����
	t

p , 	t being the

simulation time step. The sum acts over all particles within
a cutoff radius rc beyond which the forces are considered
negligible. We set the interaction radius to rc � 1, thus
defining the length scale of the system. Denoting rij �
ri � rj, uij � ui � uj, rij � jrijj, and the unit vector
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Stiff: ν = 0.49719
FENE 2rc: ν = 0.57235
FENE 2rc, L−Jones: ν = 0.61669
FENE 3rc, L−Jones: ν = 0.61358
Hookean, L−Jones: ν = 0.61046
Stiff, L−Jones: ν = 0.5736
Wormlike: ν = 0.55162

FIG. 1. Scaling of the radius of gyration of a single polymer
chain governed by linear, WLC, and FENE forces and the effect
of hard LJ potentials. The chain sizes vary from 5 to 100 beads,
with rmax � 2rc; 3rc, � � 1

 p
� 7, req � rc, Lsp � 2rc. Inte-

gration time is 10 000 units with time step 	t � 0:01.
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eij �
rij
rij

, the forces are

F c
ij � F�c��rij�eij; Fdij � ��!d�rij��uij � eij�eij;

Frij � �!r�rij��ijeij;

where the �ij are symmetric Gaussian random variables
with zero mean and unit variance and �;� are coupled by
�2 � 2�kBT, kB being the Boltzmann constant and T the
temperature of the system [14]. A common choice for the
conservative force is a soft repulsion given by F�c��rij� �

aij maxf1 �
rij
rc
; 0g. The dissipative and random forces, on

the other hand, are characterized by strengths !d�rij� and
!r�rij� coupled by !d�rij� � �!r�rij��2 � maxf�1 �
rij
rc
�2; 0g. The above relation is necessary for thermodynamic

equilibrium. The dissipative forces represent friction be-
tween the particles and account for energy loss, while the
random ones compensate for lost degrees of freedom due to
coarse graining and heat up the system.

The conservative forces present in the DPD equations
can be tailored to describe a variety of interactions
F�c��rij� � rV�rij�, for a potential V. In this work, poly-
mers are chains of beads (DPD particles) subject to the
standard DPD forces: soft repulsive (conservative), dissi-
pative, and random. In addition, they are subject to intra-
polymer forces arising from different combinations of the
following types:

Lennard-Jones.—The force for each pair of bead parti-
cles is given by the shifted (to avoid numerical instabili-
ties) LJ potential ULJ � 4��� Lrij�

12 � �Lrij
�6 	 1

4� truncated to

act only for pairs with rij < rc. We pick � � kBT, L �

2�1=6, and rc � L� 2�1=6 � 1. We note that the LJ po-
tential used here is defined at the mesoscopic level to
improve polymeric self-avoidance—softer repulsion rules
[15] are an alternative.

Hookean and Fraenkel.—The interbead force is derived
from a pairwise potential with equilibrium length req.
Since the force is proportional to �jri � ri�1j � req�, it is
attractive or repulsive depending if jri � ri�1j> or <req.
As req ! 0 we recover the Hookean spring.

FENE.—The finitely extensible nonlinear elastic
(FENE) spring has a maximum bond extension rmax be-
yond which the force becomes infinite, and hence any
length greater than rmax is not allowed. The potential for
M beads is described by UFENE � � �

2 r
2
max log�1 �

jri�ri�1j
2

r2
max

�.

Wormlike chain (WLC).—The Marko-Siggia (M-S) [16]
force expression kBT

 p
� 1

4�1�R�2 �
1
4 	 R�, where  p is the

persistence length, Lsp is the maximum length of the

spring, and R � j~ri� ~ri�1j
Lsp

. For chains with more than 2

beads,  p was adjusted using the analysis and results
presented in [17].
07600
In the above, � is the spring constant, i � 2; . . . ;M, and
the interbead force in each case is Fp � �rU.

Single chains immersed in ‘‘an ocean’’ of DPD particles
constitutes a mesoscopic model of a dilute polymer solu-
tion. Hence, the dynamics of a single flexible polymer
chain is of great importance for validation and physical
understanding of the method. Our work introduces combi-
nations of forces aiming to illustrate excluded volume
effects and phantom collision minimization (well docu-
mented with other methods), not through immiscibility of
the solvent but through different bead-spring representa-
tions. Figure 1 summarizes results for different spring laws
with and without bead-bead repulsions. The corresponding
static exponent values (�) of the radius of gyration are
computed for each case, using 5-, 10-, 20-, 50-, and 100-
bead chains. The LJ repulsion seems to be mostly respon-
sible for capturing self-avoidance while the underlying
spring force (Hookean or FENE) appears to have a sec-
ondary effect on the scaling exponent, when coupled with
hard repulsions. However, FENE forces alone scale close
to the Flory exponent, rendering the model realistic with-
out any additional repulsions. The FENE parameter rmax

was also varied, with the values 2rc and 3rc giving very
similar scaling laws (Fig. 1). The parameters for the WLC
were consistent with the rest of the models [18].

DNA molecules under steady shear have been exten-
sively studied in experimental [3] and computational [2,15]
works. Using DPD we investigated the dynamics of a
single WLC. The moving boundaries at y � 0, y � Ly
are modeled using Lees-Edwards boundary conditions
[19]: particles leaving the domain at y � 0, Ly are ad-
vanced or retarded by an increment of 	r � Uxt, �Uxt,
respectively, in the x direction, where t is the time elapsed
from an appropriate origin of times and Ux denotes twice
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the shear velocity of each boundary. Moreover, the velocity
of the particle is increased or decreased by Ux, �Ux,
accounting for both the imposed boundary condition and
the velocity discontinuity between the two walls. The rest
of the boundaries are treated periodically for all the solvent
DPD particles. To avoid unphysical periodicity artifacts,
polymer beads only undergo an elastic collision in the y
direction: �u; v; w�BEAD ! �u;�v;w�BEAD and ry ! ry �
�	t�vBEAD. Different chain sizes were accommodated by
storing the polymer coordinates without mapping them
back in the original domain. This allowed the intrapolymer
forces to be calculated properly, while the collective
solvent-solvent and polymer-solvent interactions were cal-
culated with the mapped (periodic) images. The effect of
the simulation box size Lx � Ly � Lz for the presented
results was investigated and proved to be negligible.

WLC parameters for stained  -phage DNA were as-
sumed to have L � 21:1 )m (fully extended length) and
 p � 0:053 )m (persistence length). In DPD units we
fixed L � 42:2rc,  p � 0:106rc, and kBT � 0:2. For a
M-bead chain �M � 2; 5; 10; 20�, therefore, Lsp � 42:2

M�1 .
The calculated mean-square extension of an initially 30%-
extended chain was fitted with hx2i � hx2i0 	 xi

2e�t=+ to
obtain the chain relaxation time +, and hence the
Weissenberg number We � _�+, for a shear rate _�.
Figure 2 shows the calculated average molecular (maxi-
mum projected) extension and the experimental data [3]
versus We, with varying bead numbers and correspond-
ing relaxation times. The asymptotic value for 20 beads
(�0:51) is in agreement with the corresponding one (0.47)
from BD calculations [2]. Remarkably, the results for the
average extension are not so sensitive to coarse graining,
i.e., the number of beads used for constant L, in the tested
range. The self-consistency of the parameters was verified
from the equilibrium mean-square end-to-end distance of a
2-bead dumbbell, computed as hS2i � 8:56, in close agree-
ment with the theoretical value of 8.92 given by [20]
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DPD Lowe:   2 beads (τ~29.9)

DPD Verlet:  2 beads (τ~16.5)

DPD Verlet:  5 beads (τ~20.8)

DPD Verlet:  10 beads (τ~31.2)
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BD: 20 beads (Hur et al. 2000)

Experiment (Smith et al. 1999)

FIG. 2. Mean WLC fractional extension versus We compared
to BD [2] and DNA experiments [3] data.
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hS2i � 2Lsp p�1 �
 p
Lsp

�1 � e�Lsp= p��. While most results

presented in this work employ the widely used velocity-
Verlet scheme for time integration, in Fig. 2 we have also
included results for 2 beads using Lowe’s method [21], a
different DPD approach coupling MD with an Andersen
thermostat. Figure 3 compares the calculated [22] normal-
ized autocorrelation function h	x�t�	x�t	 T�i, 	x�t� �
x�t� � hx�t�i for 2-, 5-, and 20-bead chains, with experi-
mental data [3]. It demonstrates the sensitivity of the
autocorrelation to coarse graining of the M-S force-
extension formula. Significant degradation in the agree-
ment with experiments appears for more than 5 beads. This
shows the limits of the coarse graining of a mesoscopic
relation such as M-S. The M-S formula gives the average
end force of a chain consisting of a large number of micro-
elements (bead rods freely rotating at fixed bond angles).
The coarse grained counterparts of the M-S chains rotate
about their beads with any bond angle. We have compen-
sated for this freedom by altering  p in the M-S formula
for the subchains in the spirit of [17]. Clearly, a 2-bead
dumbbell cannot describe the instantaneous configurations
of DNA observed by [3]. If their capture is the objective of
simulation, then the model needs to consist of a large
number of microelements such as the 220 freely rotating,
bead-rod chains of [2]. With fixed bond angle these be-
come the microelements of the WLC, widely considered to
be an appropriate model for DNA. To date, their simulation
has yet to be attempted.

Finally, we map the computed results, which are in DPD
reduced units, into dimensional units. In our DPD simula-
tions, a single WLC represents a  -phage DNA molecule,
with a static end-to-end distance of S � 3:5 )m. Denoting
all scaling factors by ���, we find the average end-to-end
distance (20 beads) through an equilibrium simulation to
be 3:95�rc�. Hence, 3:95�rc� � S � 3:5 � 10�6 m or
�rc� � 0:89 � 10�6 m. The volume of one cell in the
domain is �rc�3 � 7:05 � 10�19 m3 and since the density
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FIG. 3. Autocorrelation of molecular extension x vs _�T, com-
pared with experimental DNA [3] data, for various We.
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- is taken to be 4 throughout, we compute the density
scaling (for water solvents) to be �-� � 1

4 � 997 kg=m3 �

249:25 kg=m3 at T � 25 �C. Hence, the corresponding
mass of each particle (each cell contains 4 particles on
average) is given by �m� � 249:25 � 7:05 � 10�19 kg �
1:76 � 10�16 kg. Next, we use the thermal velocity given
by Vrms �

������������������
3kBT=m

p
, where kB � 1:38 � 10�23 J=K and

T � 298 K to find the time units based on the solvent
motion: �V�s � 0:0084 m

s and therefore �t�s �
�rc�
�V� �

0:89�10�6 m
0:0084 m=s � 1:06 � 10�4 s. Our DPD time step is 	t �

0:02, a physical time of 	t � 2:12 � 10�6 s. For reaching
a solution time of 10 000 units, our total integrating time is
500 000 � 	t � 1:06 s. The solvent-based computational
time compares well with DNA experimental statistics
gathered over seconds. However, the slower dynamics of
the polymer units yield markedly larger time scales. We
take a typical polymer relaxation time + � 51:8 (20 beads)
which gives �t�p � 6:3

51:8 s � 0:12 s. The close agreement
with BD simulations [2] and the experimental data [3]
suggests these scales to be appropriate. Moreover, the shear
velocity range for a length Ly � 20�rc� spans the interval
�1; 32� in DPD units, which scales to �rc� � �1; 32�=�t�p �

�7; 237� )m
s , within reasonable agreement with the values

�10; 200� )m
s used in [3].
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