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Classical Many-Body Potential for Concentrated Alloys
and the Inversion of Order in Iron-Chromium Alloys
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Atomistic simulations of alloys at the empirical level face the challenge of correctly modeling basic
thermodynamic properties. In this Letter we propose a methodology to generalize many-body classic
potentials to incorporate complex formation energy curves. Application to Fe-Cr allows us to correctly
predict the order vs segregation tendency in this alloy, as observed experimentally and calculated with
ab initio techniques, providing in this way a potential suitable for radiation damage studies.
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Computational materials science is nowadays a standard
approach to study complex problems in solids. Besides
ab initio techniques, a great interest exists for classic
approaches adequate for a large number of atoms, as
needed in studies of large crystalline defects with long
range interactions. The requirement of accurate, predictive
simulation tools points towards the necessity of models for
the interactions that are able to reproduce important fun-
damental properties of materials. Usually the models used
are known as ‘‘many-body’’ potentials, grouped in large
categories as the embedded-atom models and the second-
moment approximation [1]. Most of the vast amount of
work done using these classic potentials addresses either
pure elements or intermetallic compounds; only a few
address concentrated alloys.

Based on the enormous success of these many-body
potentials for large scale atomistic simulations of materials
[2,3], there has been a continuous progress in the field since
its inception, extending the models towards increasingly
complex materials like bcc, covalent, ordered compounds
and dilute alloys. In this Letter, we focus on concentrated
alloys with complex heat of formation, and provide a
methodology to address arbitrarily complex systems.
This methodology is applied to Fe-Cr, a system of interest
in fission and fusion technology as structural material with
good mechanical, thermal, and radiation properties.
Computer simulation studies of radiation damage in these
alloys require models that can adequately predict alloy
stability–microstructure evolution under large doses.

The so-called many-body potentials have in common a
description of the total energy in terms of the sum over
atom energies, themselves composed of two contributions,
namely, embedding and pair potential terms. For heteroa-
tomic systems, let us say binary alloys involving elements
A and B, it reads
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where � and 
 stand for elements A and B sitting at sites i
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and j, F’s are the embedding functions for either type of
elements, and V’s and 	’s are the pair potentials and
densities between �-
 pairs. Alloy properties are therefore
described by the functions 	AB and VAB. Depending on the
model considered, the density functions do not always
include the cross term 	AB. Different expressions for the
embedding energies, densities, and pair potentials englobe
a large diversity of similar models.

In recent papers we addressed the problem of alloy
description with atomistic models from the perspective of
thermodynamics rather than the properties of a single
impurity. We developed numerical tools to calculate free
energies of the relevant phases and applied them to a
couple of systems, namely, Au-Ni [4] and Fe-Cu [5].
Both of these systems have in common the fact that the
formation energy of the alloy is a rather symmetric func-
tion of the composition and, as it is shown below, a
standard approach using a cross pair potential term was
enough to reproduce their properties. We found that alloy
models fitted to properties of the dilute limit usually show
erroneous behavior in the concentrated case. For Fe-Cr, in
particular, this problem is at the core of the limitations of
the classic potentials due to the highly nonsymmetric for-
mation energy that even changes sign at low Cr composi-
tion [6].

Focusing our attention on disordered alloys, the strate-
gies to develop alloy potentials have been at least twofold:
perform a global optimization of all functions in Eq. (1)
together to match the targeted properties of A, B, and AB
systems, or start by developing potentials for pure A and
pure B, and then fit the alloy properties by adjusting the
cross terms in that equation. By far, most of the work done
on alloys has used the dilute heat of solution as the key
alloy property to fit, but, in general, the description of
concentrated alloys requires more information than that
contained in this sole quantity.

A convenient way to analyze alloy properties with in-
dependence of the pure elements is to discuss excess
quantities, i.e., quantities measured with respect to the
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TABLE I. Values of the Redlich-Kister expansion coefficients,
Eq. (5), corresponding to �Hmix

Fe�Cr from Ref. [6], in eV.

L0 L1 L2 L3 L4

0.415 66 0.081 413 4 �0:010 189 9 0.267 659 �0:248 269
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ideal solution. Ideal solutions, by definition, have null
excess quantities and their energy, Eq. (1), is given by
the linear interpolation between the two constituents. To
construct models that depart from ideality, we can use
either or both terms in Eq. (1). It is important to notice
that even without using a cross density, the embedding
term always introduces a heat of formation, i.e., a nonline-
arity of energy vs composition, through the nonlinear
functions F��	�x��.

In this work, we follow the strategy of using potentials
for the pure elements already available in the literature,
thereby taking advantage of the continuous progress in the
field. We then adjust the alloy terms, focusing on nonline-
arities built upon the pair potential cross term alone. To this
end, we use a representation that minimizes the nonlinear
contribution of the embedding term. We start with a prepa-
ration of the two pure element potentials in a way that is
adequate for our purpose, that is, the effective representa-
tion with normalized densities, which for � � A; B reads
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where the superscript o stands for original, %o
�;eq for the

density on a lattice site at equilibrium [�j�i	�i
�reqij �], and

the prime 0 for derivative. These transformations do not
alter the properties of the pure elements but have the
advantage of minimizing the contribution of the embed-
ding term to the formation energy of the alloy, as is
discussed below, and allow us to combine potentials for
pure elements coming from different authors with even-
tually very different and unrelated magnitudes of the den-
sities. In this work, we use the Fe potential reported in [7]
and the Cr potential reported in [8].

The free energy of a random solid solution phase of an
alloy with composition x at temperature T is conveniently
expressed as

g�x; T� � gref�x; T� � gmix�x; T� � �g�x; T�; (3)

where gref is the compositional weighted free energy of the
pure components, given by gref�x; T� � �1� x�gA�T� �
xgB�T�, and gmix is the free energy contribution from the
entropy of mixing for a random alloy, gmix�x; T� �
kT��1� x� ln�1� x� � x ln�x��. The excess Gibbs energy
of mixing is conveniently expressed by a Redlich-Kister
expansion [9] as

�g�x; T� � x�1� x�
Xn
p�0

Lp�T��1� 2x�p; (4)

where Lp is the pth-order binary interaction parameter; in
general, it is a function of temperature. Because of the
complexity that represents fitting potentials to actual tem-
perature dependent functions, in what follows we adopt
07570
two important simplifications: neglecting the excess vibra-
tional entropy and assuming that the formation energy does
not depend on T. This simplifies Eq. (4) to

�g�x; T� 	 �H�x� � x�1� x�
Xn
p�0

Lp�1� 2x�p: (5)

For Fe-Cr the formation energy has recently been calcu-
lated ab initio [6] together with a rough estimate of the bulk
modulus B and lattice parameter of the alloy a0. These
calculations contain several simplifications, as Fe and Cr
both have magnetism, and are therefore not to be consid-
ered as the definitive values classic models have to repro-
duce, but as first estimates upon which classic models can
be developed. From those results, we consider the forma-
tion energy as our single target function to be reproduced.

From Fig. (5) in Ref. [6] the formation energy of bcc
ferromagnetic Fe-Cr alloys can be reproduced by a
Redlich-Kister expansion, Eq. (5), to 4th order in �1�
2x�. Table I gives the corresponding coefficients in electron
volts.

To find the functional form of the cross potential, we
need an analytic model for the alloy. We adopt a model in
which the species that sits on site i can be either A or B, but
both are embedded in the same average environment, as
discussed by Ackland and Vitek [2]:

Erand � x2A
X

VAA�rij� � x2B
X

VBB�rij�

� 2xAxB

X
VAB�rij� � xAFA�~	� � xBFB�~	� (6)

with ~	 � xA�	A�rij� � xB�	B�rij�.
The contribution of the embedding terms to the energy

of mixing, �Eemb, is

�Eemb � xA�FA�~	� � FA�~	 � 1��

� xB�FB�~	� � FB�~	 � 1��: (7)

By making a Taylor development of F around ~	 � 1 and
using Eq. (2), we see that this contribution is quadratic in
�~	 � 1�, and therefore small for small variations in ~	 � 1:

�Eemb � xAF00
A�~	 � 1��~	 � 1�2 � xBF00

B�~	 � 1��~	 � 1�2:

(8)

For the potentials we use in this work, the transformations
(2), in fact, drop the contribution of the embedding term to
the formation energy down to 
1 meV=atom at x ’ 0:5,
making it negligible when compared to the target value for
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TABLE II. Coefficients of the 4th order polynomial h�x� in
Eq. (10), with values extracted from a global minimization as
explained in the text.

h0 h1 h2 h3 h4

0.883 644 �0:059 302 0.644 634 �1:342 524 0.918 932

FIG. 1. Variations of bulk modulus B and lattice parameter
a0 (a), and formation energy of the alloy (b) as a function of Fe
composition. Thin straight lines represent the linear interpolation
corresponding to the ideal solution. Maximum departures for B
and a0 from ideal behavior are 2.5% and 0.1%, respectively.

FIG. 2. Polynomial h�x� representing the composition depen-
dence of the cross potential versus Fe composition, according to
Eq. (11).
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this alloy 
100 meV=atom [6]. This in practice leaves the
pair potential as the sole contributor to the formation
energy. The contribution to the energy of mixing from
the pair potential terms is [replacing for short �VAA�rij�

by vA, and so on, and xB � x, xA � 1� x],

�Epair � x�1� x�f2vAB � �vA � vB�g: (9)

We now introduce our proposition for the alloy potential
based on the following points: (i) Taking advantage of the
result Eq. (8), we build up the nonlinearity upon the pair
potential alone (this is a simplification adopted for this case
in particular; it can easily be removed in other cases where
TO uses either or both contributions). (ii) We assume that
VAB is a function, of both �x; r�, that can be separated into a
product h�x�uAB�r�, and we then choose

VAB�x; r� � h�x�12�VAA�r� � VBB�r��: (10)

This election of the cross pair potential allows us to
describe any type of formation energy curves, giving an
ideal solution for h�x� � 1, a regular solution with positive
or negative heat of mixing for h�x� _ 1, and an arbitrary
complex heat of mixing for h�x�, a polynomial on x. We
also see that without introducing a polynomial on x we
cannot go beyond symmetric formation energies [i.e., only
L0 in the expansion Eq. (4)]. Equation (10) also shows that
if the target function is a fourth order Redlich-Kister poly-
nomial, so will h�x� be. It then provides us with a hint as to
what functional form to use in the optimization procedure.

We replace now VAB�rij� in Eq. (6) by h�x� 12 �VAA�rij� �

VBB�rij�� and, by minimizing the difference between this
expression for the energy and the target formation energy
[Eq. (5) and Table I], at the lattice parameter that mini-
mizes the energy, we find the coefficients of h�x�, reported
in Table II.

It is interesting to point out that if Eq. (8) gives a really
small contribution, as is the case for these two pure element
potentials in the effective representation, we can neglect
altogether the contribution of the embedding terms. Then,
by equating Eqs. (5) and (9) instead of minimizing a target
function, we can define h�x�, the composition dependence
of the cross potential, through an identity, namely,

�h�x� � 1��vA � vB� ’
Xn
p�0

Lp�1� 2x�p: (11)

The formation energy, the lattice parameter, and the bulk
modulus of the resulting alloy are shown in Fig. 1. The bulk
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modulus shows a small softening with respect to linearity
of about 5 GPa at x ’ 0:5 that in terms of the absolute value
of B represents a change of 3%. The lattice parameter is
linear within 0.1%. The formation energy in turn shows a
curve indistinguishable from the target function extracted
from Ref. [6]. In summary, the potential reproduces ex-
tremely well the energy, lattice parameter, and bulk
modulus.

Figure 2 shows that the polynomial h�x� that results from
the fitting procedure is a smooth function of x, close to h �
1, and that it crosses the line h � 1 at x ’ 0:94, the
composition at which the alloy behaves as ideal, as
expected.
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FIG. 3. Short range order parameter versus Cr composition as
calculated by Monte Carlo simulations with the new potential
and experimental measurements from [11].
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The final requirement for practical applications is to
define the composition x to be used in a simulation that
for heterogeneous materials becomes a function of posi-
tion. A sound choice is to use the partial B density (i.e., the
component of the total density at atoms i and j originated
by B atoms at neighboring sites l). The density on a lattice
site i, %i, is given by �l	
l

�ril�, where the sum runs over
the neighbors of i, and 
 stands for elements A or B sitting
at site l. The sum can be decomposed into partial contri-
butions %i � �0

l	A�ril� ��00
l 	B�ril� � %A

i � %B
i , where

the 0 in the sum means neighbors of i occupied by atoms
of type A, and similarly 00 means B occupancy. In this way,
the composition to be used in a pair term involving sites i
and j can conveniently be defined as

xi;j �
1

2
�xi � xj� �

1

2

�
%B

i

%i
�

%B
j

%j

�
: (12)

This definition provides a well behaved function, ade-
quate for force calculations [10].

To test the new potential and its ability to reproduce the
ordering tendencies measured experimentally, we have run
Metropolis Monte Carlo simulations in the transmutation
ensemble with displacements at 500 K and determined the
Warren-Cowley [9] short range order parameter of the first
neighbor shell. We used 500 K because the order is so weak
that at 700 K it is comparable to the noise. Results are
reported in Fig. 3, together with the experimental results
from Ref. [11] at 700 K.
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Inversion of order in Fe-Cr has been predicted long ago,
with a change in sign at x � 0:25 [12]. First measurements
found it at x � 0:10 [11]. With the ab initio data we used to
develop the potential, with the maximum strength of the
negative formation energy being only a few meV=atom,
the maximum order obtained at 500 K is only �0:025,
while the experimental result at even higher temperature is
close to its maximum possible value �x=�1� x� ’ �0:05.
This discrepancy raises doubts about the accuracy of the
ab initio prediction.

In conclusion, we present a general procedure to derive
a potential for a complex alloy and apply it to the case of
Fe-Cr using the heat of solution as reported by [6]. Even if
the target function is probably not the definitive ab initio
result for this alloy, the procedure proposed in this Letter
can be used to reproduce any function of the composition.
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