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Giant Excess Noise and Transient Gain in Misaligned Laser Cavities
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The excess noise factor is calculated analytically for a very general class of optical cavities, and is
shown to have a superexponential dependence on cavity misalignment, easily attaining values of order
1010. The physical basis is shown to be ‘‘transient gain’’ associated with amplified spontaneous emission.
Similarly dramatic effects of symmetry breaking can be expected in other physical systems with non-
normal modes.
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It has been known since about 1979 [1] that lasers with a
transverse gain or loss profile show ‘‘excess noise,’’ in that
the measured noise in the fundamental mode exceeds the
one photon per mode expected from fundamental theory
[2] by what is now usually known as the Petermann factor,
K. This has been shown to be due to the fact that the modes
of such lasers are not power orthogonal [3,4]. The effect
has been observed and thoroughly investigated in unstable
resonators [3,5–7], and analogous behavior has been pre-
dicted and/or observed in other systems with non-normal
modes, including the polarization [8] and time [9,10]
domains.

In aligned resonators usually K < 104 [3–5]. In this
Letter we show that in misaligned optical systems K �
exp�constant � misalignment�2, easily leading to K �
1010 or more before lasing is killed. Such giant values
cannot simply be interpreted as ‘‘leakage’’ of multimode
noise into the lasing mode. We show that the maximum
gain of a perturbation as it evolves towards the (stable)
lasing mode is exactly equal to K, leading to a physical
interpretation of this extreme sensitivity to noise in terms
of contamination of the lasing mode by strongly amplified
spontaneous emission; cf. [4]. It is unusual and remarkable
to find such huge numbers for generic parameters, i.e.,
unconnected with any singularity. That we find such be-
havior in an exactly soluble model is particularly interest-
ing, because it enables its physical origin and parameter
dependences to be studied. Our approach is applicable to a
wide class of misaligned cavities, and can be further gen-
eralized. We expect these ideas to have even wider appli-
cability, given the many fields in which non-normal modes
are important [11,12].

As mentioned, the transverse modes of laser cavities are
not, in general, power orthogonal. Instead, there exists a set
of adjoint modes, which are biorthogonal to the cavity
modes, and thus act as projectors onto the modes of, e.g.,
noise. In the simplest case (which is actually much more
general than it appears, as we show), the laser modes Ui�x�
and their adjoints are identical. They obeyZ 1

�1
dxUiUj � 0 i � j: (1)
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(We consider one transverse dimension, and generalization
is straightforward.) For this case, setting U�x� as the fun-
damental (i � 0) mode, its Petermann factor has a particu-
larly simple form:

K �
�
R
1
�1 dxjUj

2�2

j
R
1
�1 dxU

2j2
: (2)

Suppose now that U is a complex Gaussian beam with an
offset h and tilt 
:

U�x� � e��X	iY��x�h�2=2	i
x: (3)

(Beam confinement requires X > 0.) For such a mode,

K �

������������������
X2 	 Y2

p

X
exp

�
2X
2

�X2 	 Y2�

�
: (4)

The exponential clearly arises from misalignment, while
its coefficient is also present for the aligned cavity, so we
write K � KalKmis [13]. Kal evidently increases with wave
front curvature, but only algebraically. In contrast,Kmis has
a superexponential dependence on the tilt parameter 
,
which can lead to giant excess noise even for modest
parameter values. The reason is clear from (2): for finite
Y (curved wave front), the integrandU2 in the denominator
oscillates, leading to some cancellation; hence Kal > 1.
However, the frequency of these oscillations vanishes at
x � h, where jUj is maximal, so that the effect on K is
fairly weak. For
 � 0, however,U2 has a finite oscillation
frequency at x � h, leading to efficient cancellation and
strong enhancement of K. We now show that the above
analysis can be generalized to the widest class of laser
cavity for which analytic mode functions are available.

The modal properties of aligned laser cavities are nor-
mally found by using the ABCD matrix approach to beam
propagation around the cavity [3]. This approach can be
extended to embrace cavities with ‘‘soft’’ apertures and
mirrors (with a Gaussian attenuation or reflection coeffi-
cient) by allowing for complex ABCD matrices. Hard-
edged apertures and mirrors usually require numerical
analysis [3,4]. Soft apertures can be treated analytically,
and show broadly similar phenomena. Tovar and
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Casperson [14,15] developed an extension of ABCDmeth-
ods applicable to systems that exhibit both misalignment
and space-dependent gain or loss. They form a compound
(possibly complex) ‘‘ABCDGH’’ matrix describing propa-
gation from input to output planes (e.g., a full round trip of
a laser cavity) by ordered multiplication of elementary
submatrices for components or sections of the system. In
[15] a generalized Huygens’ integral (HI) is derived, with
the kernel having the usual ABCD dependence, but with
extra terms dependent on G and H.

As in the ABCD case [16], it is always possible to
symmetrize the kernel of this HI by introducing a ‘‘ficti-
tious’’ inverse pair of complex lenses and placing the
reference plane between them. The round-trip eigenmodes
of this symmetric kernel then obey the nonconjugated
orthogonality relation (1). Under this complex-lens trans-
formation, the B element of the ‘‘physical’’ ABCDGH
matrix is invariant, while the A and D elements become
equal, with value S � cos � �A	D�=2, and the symme-
trized HI is given by

Eout�x� � e�
����������
�ik
2�B

s Z 1

�1
dx0Ks�x; x0�Ein�x0�;

Ks�x; x0� � eifk�S�x
2	x20��2xx0=2	��x	x0�=Bg:

(5)

Here k � 2�=� is the wave vector at the reference plane.�
is the ‘‘H’’ element of the transformed matrix, related to
the original elements by � � �BG	 �1� A�H=2. Its
presence thus requires that one or both of G and H be
nonzero, i.e., some form of misalignment [14]. The pre-
factor e� describes the effect of transversely uniform gain
or loss elements, including, for example, a uniform gain set
so as to place the laser exactly at threshold. Above thresh-
old, saturation will reduce the gain and modify its trans-
verse profile, but the evolution of perturbations incoherent
with the lasing mode, such as noise, should still be reason-
ably well described by an HI of the form (5). It is easy to
verify that (5) has a tilted Gaussian eigenfunction of the
form (3), with

X	 iY � �
k sin 
B

; (6a)

h �
1

X
Re

�
�
B

cot
�
 
2

��
; (6b)


 �

�
X2 	 Y2

kX

�
Im

�
�

1� cos 

�
: (6c)

Because both B and S can be complex, and can lie in any
quadrant, the sign in (6a) cannot be predetermined, but can
always be chosen such that X > 0. Given these values for
the mode parameters, using (4) we can readily evaluate the
Petermann factor, which clearly has a superexponential
dependence on the misalignment parameter �. We can
thus conclude that giant excess noise is generic in suffi-
ciently misaligned laser cavities—provided that the K
calculated at our symmetry plane is representative of that
at any physical reference plane.
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It has been shown that a cavity usually has as many
Petermann factors as it has sections made disjoint by
apertures [7,17], and that the spectral properties of a laser
are determined by an ‘‘effective excess noise factor’’ [7],
broadly the weighted mean of the Petermann factors over
the amplifying plane(s) within the cavity. Our symmetriz-
ing transformation is equivalent, in its effect on K, to an
aperture offset by a distance l from the axis. A soft aperture
that multiplies the mode U by a factor e� �x�l�

2=2 scales K
by

Kap �
�����������������������
X2= 2 � 1

q
exp

�
2 2X�l� h�2

�X2 �  2�

�
: (7)

Since Kap � 1, K increases in going from the ‘‘fictitious
symmetry plane’’ to the adjacent physical plane. Where a
noise source is in a cavity section disjoint from the refer-
ence (symmetry) plane, the change of K through the aper-
ture exactly accounts for the change in the noise field in
propagating from the source plane to the reference plane.
We can thus conclude the following: at any and every
reference plane of a misaligned laser cavity describable
by a generalized ABCD matrix, the excess noise is en-
hanced by a factor that is exponential in the square of the
misalignment parameter.

The above formulas establish K in terms of the profile,
offset, and tilt of the stationary fundamental modeU of the
laser described by (5). We can obtain further insight by
allowing these parameters to evolve in time, during either
the establishment of the mode from noise or the (linear)
perturbation of the established mode by noise incoherent
with it. It has previously been shown, for a continuous
medium [18] and for compound ABCD systems [19], that
an input perturbation may acquire excess amplification,
and that the maximum value of this ‘‘weak wave excitation
factor’’ is exactly equal to K. To extend this approach to
misaligned systems, suppose that at t � 0 one injects a
weak field with the form (3), but with arbitrary parameters
X0 	 iY0, h0, and 
0. Iteration of the HI (5) generates a
mapping of these parameters, which evolve asymptotically
to their stable fixed-point values given by (6). The ratio of
the asymptotic and initial amplitudes largely determines
the transient gain, defined as the fractional amplification of
the perturbation’s energy as it evolves towards the stable
fundamental mode. Because n iterations of the single-trip
HI are equivalent to a single HI with the kernel given by the
nth power of the single-trip ABCDGH matrix, E�n�

out can be
exactly evaluated and the limit n! 1 taken. We optimize
with respect to the initial parameters, and find that the
maximum transient gain occurs for h0 � h, i.e., for a
perturbation with the same offset as the mode, but with

0 � �
 (initial tilt exactly opposite to that of the mode).
The optimum beam shape has X0 � X and Y0 � �Y, in
accord with previous analysis [18–20]. The associated
maximum transient gain is then exactly K � KalKmis.

Following the dynamical evolution of the beam parame-
ters we find that an initial ‘‘weak wave’’ with these optimal
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parameters drifts towards low offsets, thus accumulating
significant differential gain, before stabilizing at the (finite)
equilibrium offset. We can thus interpret the giant excess
noise that can arise on misalignment as due to excess
amplification of spontaneous emission (or other) noise as
the noise field evolves towards the stable mode, consistent
with, but generalizing, previous work [4,18–20]. This
dynamical interpretation of excess noise seems more
physical than one based on noise correlation between
multiple modes. (How many modes would be needed to
describe a K of 1010, such as that found below?) It also
leads, in its relation to transient gain and optimal pertur-
bations, to a natural link with other fields such as fluid
turbulence [11].

Because of the superexponential dependence of Kmis on
the misalignment parameter �, one could expect noise to
begin to dominate the laser output as misalignment is
increased, leading to a collapse of coherence. Such an
effect is known to occur when the modulation frequency
of an actively mode-locked laser is sufficiently detuned
from the round-trip time. Kärtner et al. [9] have already
identified this loss of coherence with transient gain asso-
ciated with nonorthogonality of the eigenpulses, and
Geddes et al. [10] showed that this transient gain is iden-
tical to the Petermann factor, generalizing K to the time
domain. We now see that this identity, and thus giant
excess noise, is a completely general effect of misalign-
ment, whether in the time or the space domain.

To illustrate and confirm our general analysis we now
calculate K for a class of Fabry-Perot cavity with a mirror
of Gaussian reflectivity profile, devised and analyzed by
Doumont et al. [5], and later used by Longhi to illustrate
the effect of mirror tilt on K [13]. In fact, we consider a
broadly equivalent system, shown in ‘‘unfolded’’ form in
Fig. 1. It has two plane mirrors, one-way propagation
between which is described by a real ‘‘abcd’’ matrix,
augmented by a Gaussian aperture in front of one mirror.
The key difference from [5] is that we allow this aperture to
FIG. 1. Unfolded Fabry-Perot cavity (see text). The thin ver-
tical lines represent plane mirrors, while the half-trip ‘‘abcd’’
and ‘‘dbca’’ matrices are real. An offset Gaussian aperture in
front of one mirror replaces the Gaussian reflectivity mirror in
the scheme of [5].
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be offset by a distance l from the axis. It multiplies the
incident field by a transmission factor exp��  

2 �x� l�2 on
each pass, where  � 1=w2

ga in the notation of Doumont
et al. The round-trip HI for this cavity has a symmetric
kernel at both the aperture mirror and the other mirror (the
reference plane in [5,13]), allowing direct use of the theory
developed above.

At the aperture-mirror plane (r.p.2 in Fig. 1) B � B2 �
2ab, and by inspection the round-trip HI is

Eout � e�
����������
�ik
2�B

s Z 1

�1
dx0K2�x; x0�Ein�x0�;

K2�x; x0� � e� �x�l�
2=2eik�mx

2	mx20�2xx0�=2Be� �x0�l�
2=2:

(8)

We use the same cavity parameters as Doumont et al.,
namely m � ad	 bc and * �  L=k, where L � 2ab is
an effective cavity length. Clearly (8) can be put into the
form (5), with S � m	 i* and �2 � �ikl*. Adopting
R � Re�sin � as a convenient dimensionless parameter,
X2 � jkR=2abj, and the Petermann factor at the aperture
mirror is given by

K2 �

������������������������������������
�R2 	m2�2 �m2

p
jRj

����������������������
�R2 	m2�

p exp
�
-2l2

�L

�
; (9a)

-2 �
4�*2�m� 1�2�R2 	m2��R2 	m2 	m�

jRj�R2 	m2 �m�3
: (9b)

The HI at the other mirror (r.p.1 in Fig. 1) can be
obtained by transformation of (8). It also has the symmetric
form (5), but with �1 � �ikl*=a. Then

K1 �

������������������������������������
�R2 	m2�2 �m2

p
jRj

exp
�
-1l2

�L

�
; (10a)

-1 �
8�*2�m� 1�2�R2 	m2�2

jRj�R2 	m2 �m�3
: (10b)

It can be verified that K1 and K2 are related by the scaling
given in (7), which applies equally to real and fictitious
apertures.

In Fig. 2 we plot Kal and Kmis at both reference planes,
for fixed * � 0:02, against magnification M [defined as

M � m form � 1,M � m	
�������������������
�m2 � 1�

p
form> 1].Kal

1 is
exactly as in [5], but note that Kal

2 � Kal
1 . The excess noise

is dominated by misalignment, however, peaking at K �
KalKmis > 1010 form just above unity, i.e., for a cavity that
is very slightly unstable in the absence of an aperture.
These huge values arise when the aperture is offset by its
width wga: they, of course, scale dramatically with offset.

At both planes the power loss is 1� je/j2 where

/ � �
i 
2
�  l2

�
m� 1

m� 1	 i*

�
: (11)

The loss penalty of misaligning the aperture is evident, but
note that it vanishes for m � 1, as expected. The huge
excess noise in Fig. 2 occurs for misalignment power
3-3



0.0 0.5 1.0 1.5
Magnification

100

102

104

106

108
E

xc
es

s 
no

is
e

Kmis
1

Kmis
2

Kal
1

Kal
1

FIG. 2. Excess noise factors for the cavity of Fig. 1, plotted
against magnification M for * � 2ab=kw2

ga (same parameters as
in Fig. 1 of [5]). Upper curves Kmis show giant enhancement of
excess noise for aperture offset by l � wga. Lower curves Kal are
for l � 0, corresponding to [5]. In each case K2 is evaluated at
the aperture-mirror plane (Fig. 1), and K1, which is somewhat
larger, at the other mirror (the reference plane of [5]).
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loss only about 4 times the loss of the aligned cavity,
suggesting good prospects for experimental observation,
and perhaps even exploitation, of giant Petermann factors.

For example, optically pumped vertical-external-cavity
surface-emitting lasers (VECSELs) naturally have an aper-
tured gain (which is broadly equivalent to a loss aperture
[3]), and furthermore can easily be driven many times
above threshold [21]. Our analysis suggests that operation
of a VECSEL in a slightly unstable configuration (m> 1)
should enable observation of a dramatic increase in noise
as the pumping beam is progressively offset from the
cavity axis. Perhaps more usefully, our dynamical analysis
suggests that, below threshold, such a laser should act as a
high-gain amplifier for a suitably injected signal beam. In
contrast to a single-mode laser, such an amplifier would not
exhibit excess noise, as is well known [18]. This is also
evident from our transient gain analysis, which shows that
the excess amplification depends on the configuration of
the perturbation, but not on whether it is signal or noise.

In summary, we have shown that breaking the transverse
symmetry of a laser cavity through misalignment can
easily lead to giant values of transient gain and excess
noise, for which we have derived analytic formulas. We
07390
calculated K > 1010 for moderate misalignment of a typi-
cal cavity. Physical quantities of such magnitude are very
unusual in the absence of singularities. We expect similarly
dramatic enhancements of transient gain in other physical
systems that exhibit nonorthogonal modes.
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