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Modulational Instability in Systems with Integrating Nonlinearity

U. Streppel,1 D. Michaelis,' R. Kowarschik,? and A. Briiuer'

'Fraunhofer Institut fiir Angewandte Optik und Feinmechanik, Albert-Einstein-Strasse 7, 07745 Jena, Germany
*Friedrich-Schiller-Universitdt Jena, Institut fiir Angewandte Optik, Max-Wien-Platz 1, 07743 Jena, Germany
(Received 26 October 2004; published 12 August 2005)

A new type of modulational instability for coherent as well as partially coherent light in systems with
integrating nonlinearity caused by an irreversible process is investigated both experimentally and
theoretically. In such systems plane waves never reach the stationary limit and exhibit a nontrivial time
dependence resulting in new features of the modulational instability. For example, the modulational
frequency of the nonexponentially increasing perturbation with maximum gain decreases while the wave
is propagating. The threshold for vanishing modulational instability due to a finite degree of spatial
coherence depends only on system parameters and not on the light intensity.
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Modulational instabilities (MIs) attract great attention in
many branches of nonlinear science including chemistry,
biology, fluid dynamics, plasma physics, and optics [1].
The existence of MI causes a wealth of nontrivial nonlinear
phenomena like solitons or patterns (see, e.g., [1-3]). In
nonlinear optics, Mls of coherent as well as partially
coherent light in dielectric media with instantaneous and
noninstantaneous refractive nonlinearity are well under-
stood. The MI in instantaneous Kerr-like media is charac-
terized by an exponential increase of a modulated
perturbation with the maximum instability gain, which
prevails over all other perturbations with smaller gain
[4]. Finally, a pattern of solitonic filaments emerges. The
fixed modulation frequency of the perturbation with maxi-
mum gain depends on the light intensity. For increasing
intensities larger modulation frequencies are observed.
Common spatially extended systems with noninstantane-
ous nonlinearities exhibit a finite memory, i.e., the system
remembers all incoming light during a given time period
depending on its relaxation time. For small relaxation
times the MI of stationary plane waves in instantaneous
media is reobtained. But the features of MI change for
large relaxation times. In particular, almost all perturba-
tions with different spatial frequencies have approximately
the same maximum instability gain; i.e., there exists no
distinct favored spatial frequency for the perturbation [5].
Because the initial perturbation consists of dynamic noise,
no growth of an instability was predicted and experimen-
tally verified in this case, although a positive instability
gain exists [5]. Furthermore, it was shown that even a
negative instability gain for all spatial frequencies may
occur, i.e., a damping of all possible perturbations, using
plane waves with a small enough spatial coherence length
[6,7]. The threshold for vanishing MI depends on the
incoming light intensity. For larger intensities a smaller
spatial coherence length is needed to prevent MI.

Up to now all investigations about MI are realized in
nonlinear systems, where the nonlinearity is caused or at
least dominated by reversible processes. Contrarily, in this
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Letter MI is studied in systems with integrating nonlinear-
ity due to an irreversible process. In order to illustrate the
differences, let us assume a nonlinear process where the
nonlinear refractive index n is governed by the following
rate equation: d,n = g[n]f[I1/Tex. — n/T, Where g and
f are arbitrary functions of n and the light intensity I,
respectively. The first term on the right-hand side of the
equation describes an intensity induced excitation of n
within a typical time T,,.. The next term is a linear relaxa-
tion process with a relaxation time T,,. If the nonlinear
process starts at t = 0, the refractive index can be written
as n(t)= [odrg[n(m)]f1(7)]exp[ —(t = 7)/Tre1]/ Texe- For
finite values of Ti/exc @ noninstantaneous nonlinearity
with a finite memory time T, exists. In the case of a fast
process (Tey. ~ Ty — 0) a common instantaneous non-
linearity arises. But for vanishing relaxation, i.e., infinite
long relaxation times 7,; — oo, the nonlinear refractive
index is given by the integral of all events in the past n(r) =
[ d7g[n(7)1f[1(7)]/ Tex.. We term this type of nonlinear-
ity due to an irreversible process an integrating
nonlinearity.

From an intuitive point of view one would expect that
the MI of nonlinear systems with integrating nonlinearity
should be regarded as the limiting case of noninstantaneous
systems with very large relaxation times. Consequently,
one would deduce that no growth of instability would occur
in such systems, at least for coherent light [5]. But, a
simple consideration shows that a straightforward transi-
tion from large finite to infinite relaxation time is impos-
sible with respect to MI. In case of finite relaxation times a
plane wave may reach its stationary limit and MI of such
stationary plane waves is usually studied. Contrarily, a
strict stationary plane wave can never be reached in sys-
tems with integrating nonlinearity. Therefore, MI of a
temporally evolving plane wave or, more important, MI
of a nonlinear plane wave with a finite starting time has to
be studied.

An UV exposed photosensitive polymer exhibits a typi-
cal example for a nonlinear system with integrating non-
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linearity. In our experimental setup, the beam of an argon-
ion laser (363.8 nm) is focused by a microscope objective
on a rotating diffuser introducing phase fluctuations
(~1 MHz), which are much faster than the typical response
time (~1 s) of the polymer. The degree of spatial coher-
ence is adjustable and determined by the spot size. The
light transmitting the diffuser is collimated by a second
objective, in whose back focal point the polymer sample
(Ormocer) is positioned. Adding 1 wt % of the photoini-
tiator Irgacure 369 provides for high UV photosensitivity.
Thus an irreversible polymerization reaction with the cor-
responding increase of the refractive index starts im-
mediately after starting the exposure. A threshold for a
minimum amount of deposited energy necessary to start
the nonlinear process could not be found [8]. The sample is
exposed in the direction of the layer. Because of the curing
of the polymer, the emerging MI patterns are fixed and
could be investigated after finishing the exposure process
using a light microscope, which operates in phase contrast
mode.

Let us start with the theoretical description of MI for
coherent light in systems with integrating and saturable
refractive nonlinearity, such as photosensitive polymers.
The propagation of the electric field U is governed by the
paraxial wave equation:

[i0, +10% + 0%) + N(X, Y, Z T)U(X, Y, Z, T) = 0,
(D

where the field U is normalized to the field amplitude of the
plane wave |Uy|. N(X,Y,Z T) describes the nonlinear
refractive index change due to polymerization. It is scaled
to the maximum possible index change An,. The trans-
verse and longitudinal normalization lengths read as xy =

A _ A
and z , where A and n; are the wave-
27/ Angn, 0 27An, !

length and the linear refractive index, respectively. For the
sake of simplicity the dynamics of the refractive index
change is modeled by means of a rate equation describing
a one-photon polymerization process empirically [9—-11]:

INX, Y, ZT)=[1-NX,Y,ZDIUX,Y,Z T
2

The time T is normalized by T, = 1/(A|U,|?), where A
is the polymerization rate [10]. The analysis given in this
Letter can be straightforwardly extended to much more
complicated material models. Equation (2) reflects two
main points. First, the nonlinearity is a saturable one.
The maximum normalized refractive index of N = 1 cor-
responds to a complete polymerization. Second, because
the right-hand side of Eq. (2) represents always a positive
value, there are no relaxation processes and the irreversible
polymerization leads to an integrating, focusing nonline-
arity. The plane wave solution of the system of Egs. (1) and
(2) is given by Upw = exp(i[1 — exp(—T)]Z) and Npy =
1 — exp(—T), whereby the nonlinear process starts at
T = 0. The continuous change of the refractive index leads

to a time dependent propagation constant of the plane
wave. In order to study MI, these plane waves are perturbed
by small transverse, spatial modulations as U = Upw|[1 +
8U(Z,T, k)exp(ik,x + ik,y)] and N = Npy + SN(Z, T, k) X
exp(ik,x + ik,y) with k&> = k% + k2, |6U| < 1, and 6N <
Npw. The linearization of Egs. (1) and (2) with respect to
o6U and 6N can be written in the form of a single equation
for SN(Z, T) = 8N(Z, T) exp(T)
- k>
drON = Ccos(;Z + go)

2
K- Z))dz, 3)

zZ .
- 2] ON exp(—T) sin<
0 2

where C and ¢ denote the amplitude and the phase of the
initial field perturbation with the modulational frequency k
at Z = 0. Using the ansatz 6N(Z, T, k) = ?ZOAq(Z, k) X
D,(T, k), Eq. (3) can be solved by means of successive
approximation analytically; i.e., the (¢ + 1) component of
the series is determined by solving Eq. (3), where the right-
hand side is given by the component (g). The series con-
verges very quickly. The larger Z the more addends are
required and higher order series components become pro-
gressively dominant. In contrast to usual MI, a separation
of the Z and the T variables seems to be impossible. As a
consequence, there is a nontrivial connection of the Z and
T variables for the maximum growing perturbation similar
to convective instabilities. During propagation, the time
Tnax of maximum growth increases [Fig. 1(a)]. The physi-
cal interpretation is straightforward inspecting the recur-
sive formula of the temporal shape of the index per-
turbation D, ((T) = [§ D,(7)d7exp(—T), which finally
leads to the total index perturbation SN(Z, T, k) displayed
for a given Z and a typical k value in Fig. 1(b). Because of
the integrating nature of the nonlinearity the perturbation
has to increase for small times. After reaching a maximum
at T, the perturbation has to converge to zero for large
times [exp(—7) term in recursive formula] because the
polymerization due to the plane wave tends to the maxi-
mum attainable value Npw(T) — 1 for T — oo and the
system approaches more and more a linear response.
Furthermore, a successive temporal integration according
to the recursion formula shifts progressively the temporal
index perturbation towards larger times 7 for increasing ¢
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FIG. 1. Evolution of the time T},,, of maximum growth (a) of

the index perturbation and a temporal shape (b) of such a

perturbation (z = 100 um, k = 0,22 um™1).
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FIG. 2 (color online). Growth of the index perturbation for
coherence length 1/x = oo (a) and for 1/x = 1.6 um (b).

values. Because higher order series components become
progressively dominant for larger propagation distances Z,
an increase of T, occurs during propagation. Thus, the
convective character of the MI is an inherent feature of
integrating nonlinearity, and it will influence the arising MI
pattern considerably as we show below.

In contrast to above expectations [5], the accumulated
refractive index perturbation shows a pronounced maxi-
mum at a certain modulation frequency k,,, for each given
propagation length [see Fig. 2(a)]. Moreover, auxiliary
maxima occur for higher spatial frequencies. Surpris-
ingly, the value of k.,  decreases during propagation
[Fig. 2(a)]. This originates from the increase of the values
of Thax(Z) with increasing propagation distance as ex-
plained above [Fig. 1(a)]. If the maximum growth of the
perturbation occurs at larger times, the medium is already
polymerized by a larger amount and the potential maxi-
mum nonlinear index change for the perturbation de-
creases. Thus, for increasing values of T,.(Z) the po-
tential nonlinearity for the perturbation decreases continu-
ously. As for all other types of MI, such as in systems with
Kerr nonlinearity, a decreasing nonlinearity results in a
decrease of the modulational frequency k., with the
maximum growth rate. Figure 3 shows a typical experi-
mental realization of a pattern in the transverse (X, Y)
plane, which arises from such a type of MI. It is charac-
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FIG. 3. Transverse MI pattern in Ormocer polymer for coher-
ent (a) and partially coherent (b) exposure, (insets: Fourier
analysis).

terized by a rather broad, ring-shaped spatial spectrum
(Fig. 3, inset) as it is predicted by theory. The experimental
evidence of the decrease of k,, and a coarsening of the
self-organized structure with increasing propagation is
given in Fig. 4. Figure 4(a) shows an example of a MI
pattern in the (X, Z) plane obtained in Ormocer polymer.
Concerning the decrease of k., during propagation, a
comparison of experimental and theoretical results is de-
picted in Fig. 4(b) for three polymers with different maxi-
mum index changes An,. According to the scaling of the
transverse coordinates, smaller An, induce smaller spatial
frequencies k.-

Now, let us turn towards MI of partially coherent plane
waves in systems with integrating nonlinearity. The system
is characterized by two different time scales, namely, the
coherence time 7. (us region) due to phase fluctuation
caused by the rotating diffuser and the typical response
time of the nonlinear medium given by the normalization
time T, (10° ws region). Thus, the nonlinearity responds
only to the time-averaged intensity and not to the highly
speckled light. The resulting partially spatially incoherent
light is described by the coherence function B =
(UR,, Z, T)U*(R,, Z, T)) with R; = (X;, Y;). The brackets
() denote the time average over T,, with T, < T,, < T.
In this case (NU(R,)U*(R,)) = NB and (N) = N holds
and the basic equations read as

i9,B(R, p,Z,T)+ViV;B(R,p,Z,T)+[N(R,, Z,T)— N(R, Z T)IB(R, $,Z,T) =0,

where R = (ﬁl + 132)/ 2 denotes the transverse middle
point coordinate and p = R, — R, the difference
coordinate.

The plane wave solution is given by Npy =
1 —exp(=T) and Bpw(R, p,Z T) = b(p) with b(p =
0) = 1. For the sake of simplicity the spatial coherence is
modeled by an exponential distribution b(g) =
exp(—«|pl) according to [6,7]. The correlation length is
described by 1/ . In order to study MI the plane waves are
perturbed by small perturbations as B(R, p,Z T) =
Bpw(p) + By(R, p,Z,T) and N(R,Z T) = Npw(T) +
Ni(R,Z, T) with |B| < |Bpw|l and N; < Npy.
Combining the procedure given in [6,7] and the above

aNRZT)=[1-NR ZT)IBR p=02T), (4
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FIG. 4. z-dependent filamentation (a) for coherent exposure
and evolution of maximum growing spatial frequency k.. (b)
(solid lines: theoretical results).
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FIG. 5. Evolution of the spatial frequency k.,, of maximum
growth (a) for z-dependent filamentation (b) for three correlation
lengths (solid lines: theoretical results).

described method of successive approximation via series
expansion, the resulting linearized equations for B and N,
are solved analytically. In analogy to the coherent excita-
tion [Fig. 2(a)] a distinct perturbation maximum exists at a
modulation frequency k., for each propagation length
[Fig. 2(b)]. But now, those frequencies, which are not
favored by the nonlinear system, are damped, resulting in
a sharper frequency spectrum and vanishing auxiliary gain
maxima, in contrast to coherent excitation. These theoreti-
cal considerations are confirmed by the experimental stud-
ies. The spatial spectrum of the obtained MI patterns shows
a sharp annular structure [Fig. 3(b)]. As above, the favored
spatial frequency k., decreases during propagation.
Additionally, k., critically depends on the spatial coher-
ence length 1/ of the plane wave. For a smaller coherence
length 1/k, the stronger diffractive broadening leads to a
coarser MI pattern; i.e., smaller values of k., occur
[Fig. 5(a)]. Similar to the investigations in noninstantane-
ous media with finite relaxation times [6,7], MI can even be
eliminated entirely, if the coherence length of the plane
wave is smaller than a certain critical value x.. The theory
above predicts a threshold of 1/« = 3.5 for vanishing MI.
In real denormalized units x,. reads as

Ag

X, = ————

27JAngn;

where x,. depends only on system parameters and not on
the averaged light intensity. In particular, x. is in inverse
proportion to the square root of the maximum nonlinear
refractive index change An,. Figure 5(b) shows an experi-
mental realization of a situation just beyond the MI thresh-
old. It can be clearly observed that larger damping rates
occur for higher spatial frequencies. Perturbations with
small spatial frequencies survive for a rather long propa-

gation distance because the actual coherence length is quite
close to the MI threshold.

X 3.5, 5)

To conclude, we have shown that a new type of MI exists
in systems with integrating nonlinearity. A pronounced
maximum of the nonexponentially growing perturbations
exists for a certain modulation frequency of the perturba-
tion for each propagation distance leading to spatially
structured MI patterns. This is in contrast to the MI in
media with a noninstantaneous nonlinearity with finite but
rather long relaxation times, where almost all perturbation
modes exhibit the same MI gain [5]. Furthermore, the MI
shows typical features of a convective instability, i.e., a
progressive shift of the maximum perturbation towards
larger times during propagation. This leads to a decrease
of the spatial frequency with maximum MI gain for in-
creasing propagation length. A decrease of the coherence
length results in a decrease of the spatial frequency with
maximum MI gain due to stronger diffractive broadening.
High spatial frequencies are progressively damped. If the
coherence length is smaller than a certain critical value, MI
vanishes entirely. This threshold does not depend on the
light intensity, but only on system parameters, such as
linear and nonlinear refractive indices. All theoretical pre-
dictions are verified experimentally in UV exposed photo-
sensitive polymers. Finally, we note that these investi-
gations are of great importance even for the fabrication
of homogeneous micro-optical polymer elements [8].
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