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A precision method for determining jVubj using the full range in q2 of B ! �‘� data is presented. At
large q2 the form factor is taken from unquenched lattice QCD, at q2 � 0 we impose a model independent
constraint obtained from B ! �� using the soft-collinear effective theory, and the shape is constrained
using QCD dispersion relations. We find jVubj � �3:54� 0:17� 0:44� � 10�3. With 5% experimental
error and 12% theory error, this is competitive with inclusive methods. Theory error is dominated by the
input points, with negligible uncertainty from the dispersion relations.
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The remarkable success of the B factories has led to a
new era for precision results in the Cabibbo-Kobayashi-
Maskawa (CKM) sector of the standard model. For jVubj
measurements must now surmount the dominant theoreti-
cal uncertainties. For inclusive semileptonic decays mea-
suring jVubj is difficult because cuts either make ob-
servables sensitive to a structure function that demands
input from radiative decays or require neutrino reconstruc-
tion. The heavy flavor averaging group (HFAG)’s average
from inclusive decays based on operator product expansion
(OPE) techniques is 103jVubj � 4:7� 0:4 [1]. For jVubj
from B ! �‘ 
�, model independent form factor informa-
tion relies on precision lattice QCD.

Recently, the Fermilab/MILC [2] and HPQCD [3]
groups have presented unquenched lattice results for B !
� form factors. Uncertainties in the discretization restrict
the kinematics to pions that are not too energetic E� &

1 GeV, for which the invariant mass of the lepton pair is
15 & q2 	 26:4 GeV2. For 
B0 ! �
‘ 
�, d�=dq2 �
NjVubj

2j ~p�j
3jf
�q2�j2, where N � G2

F=�24�
3�, so, unfor-

tunately, since the phase space goes as j ~p�j
3, there are

fewer events and more experimental uncertainty in this re-
gion. For example, Belle [4] found 103jVubjq2�16�3:87�
0:70�0:22
0:85

�0:51 with [2] and 4:73�0:85�0:27
0:74
�0:50 with

[3] where the errors are statistical, systematic, and theo-
retical. In quadrature this is an uncertainty of �25%.

The latest BABAR, CLEO, and Belle average is [5]

Br � 
B0 ! �
‘� 
�� � �1:39� 0:12� � 10�4; (1)

which should yield jVubj at the 
 5% level. So far extrac-
tions of jVubj from the total Br rely on QCD sum rules [6]
and quark models for input. HFAG reports results on
Br�B ! f�;�;!g‘ 
�� that lead to central values 103jVubj �
2:9 to 3.9 [1]. Because of the uncertainty they do not
currently average over exclusive extractions of jVubj.

In this Letter we present a model independent exclusive
method for determining the entire B ! � form factor
f
�q2� and thus jVubj. A total uncertainty �jVubj 
 13%
05=95(7)=071802(4)$23.00 07180
is achieved by combining (1) the unquenched lattice results
[2,3], (2) a constraint at q2 � 0 derived from soft-collinear
effective theory (SCET) [7] and B ! �� data, which
determines jVubjf
�0�, and (3) dispersion relations and
analyticity that allow us to interpolate over the entire
region of q2 by bounding the shape of f
�q2� between
input points [8,9]. The SCET constraint induces an addi-
tional implicit functional dependence on jVubj in the form
factors. Our first analysis uses just the total Br, yielding an
analytic formula for jVubj. The second includes q2 spectra
with a �2 minimization that allows the experimental data to
constrain the theoretical uncertainty. A different approach
for including the q2 spectra was developed in [10] based on
the Lellouch distribution method [11].

Analyticity bounds.—We briefly review how analyticity
constrains the B ! � form factors, f
 and f0, refer-
ring to [8,9,12] for more detail. Our notation follows
[12], and we set t� � �mB �m��

2. Suitable derivatives
of a time ordered product of currents, ����q2� �
i
R
d4xeiqxh0jTJ��x�Jy�0�j0i, can be computed with an

OPE in QCD and are related by a dispersion relation to
moments of a positive definite sum over exclusive states

Im��� �
Z
�p:s:�h0jJy�j 
B�ih 
B�jJ�j0i 
 � � � : (2)

Keeping this first term bounds a weighted integral over
t
 	 t 	 1 of the squared B� production form factor.
Using analyticity and crossing symmetry, this constrains
the shape in t � q2 of the form factors for B ! � in the
physical region 0 	 t 	 t�. The results are simple to ex-
press by writing each of f
�t� and f0�t� as a series,

f�t� �
1

P�t���t; t0�

X1
k�0

ak�t0�z�t; t0�k; (3)

with coefficients ak that parametrize different allowed
functional forms. The variable

z�t; t0� �
�������������
t
 � t

p
�

���������������
t
 � t0

p�������������
t
 � t

p



���������������
t
 � t0

p (4)
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maps t
 < t <1 onto jzj � 1 and �1< t < t
 onto z 2
�21; 1�. t0 is a free parameter that can be chosen to attain
the tightest possible bounds, and it defines z�t0; t0� � 0. We
take t0 � 0:65t� giving 20:34 	 z 	 0:22 for t in the
B ! � range. In Eq. (3) the ‘‘Blaschke’’ factor P�t� elim-
inates subthreshold poles, so P�t� � 1 for f0, while P�t� �
z�t;m2

B� � for f
 due to the B� pole. Finally, the ‘‘outer’’
function is given by

��t; t0� �
������������
nI

K��0�
J

s
�

���������������
t
 � t0

p



���������������
t
 � t0

p
�
�t
 � t��a
1�=4

�t
 � t0�
1=4

�
�

�������������
t
 � t

p



�����������������
t
 � t�

p
�a=2

�
�������������
t
 � t

p



�����
t


p
��b
3�

; (5)

where nI � 3=2 and for f
: [K � 48�; a � 3; b � 2],
while for f0: [K � 16�=�t
t��; a � 1; b � 1]. Here ��0�

J
is obtained from derivatives of ��q2� computed with an
OPE. At two loops in terms of the pole mass and conden-
sates and taking � � mb [11,13]

��0�
f


�
3�1
 1:140(s�mb��

32�2m2
b

�

mbh 
uui

m6
b

�
h(sG

2i

12�m6
b

;

��0�
f0

�
�1
 0:751(s�mb��

8�2 


mbh 
uui

m4
b



h(sG2i

12�m4
b

;

(6)

with 
mbh 
uui ’ �0:076 GeV4, h(sG
2i ’ 0:063 GeV4. We

use mpole
b � 4:88 GeV as a central value. With Eq. (3) the

dispersive bound gives a constraint on the coefficientsXnmax

k�0

a2k 	 1; (7)

for any choice of nmax.
Equations (3) and (7) give only a weak constraint on the

normalization of the form factor f
. In particular, data
favor a0 � 0:02, so a20 � 1. The main power of analyticity
is that if we fix f
�q2� at nmax input points then it con-
strains the q2 shape between these points. With nmax � 5
the error from the bounds is negligibly small relative to
other uncertainties, as we see below (our analysis is also
insensitive to the exact values of ��0�

J or mb). The bounds
can be strengthened using heavy quark symmetry or higher
moments [12], but since this uncertainty is very small we
do not use these improvements.

Input points.—A constraint at q2 � 0 is useful in pin-
ning down the form factor in the small q2 region. Here we
implement a constraint at q2 � 0 on jVubjf
�0� that fol-
lows from a B ! �� factorization theorem derived with
SCET [7]. The result holds in QCD and uses isospin
symmetry and data to eliminate effects due to the relative
magnitude and strong phase of penguin contributions.
Manipulating formulas in [7], the result is

jVubjf
�0� �
�
64�

m3
Bf

2
�

Br�B� ! �0���

+B�jVudj
2G2

F

�
1=2

�

�
�C1 
 C2�tc � C2

C2
1 � C2

2

�
; (8)
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up to corrections of order (s�mb� and !QCD=mb. Here
C1 � 1:08 and C2 � 20:177 are parameters in the elec-
troweak Hamiltonian at � � mb (we drop the tiny C3;4),
and tc is a hadronic parameter whose deviation from 1
measures the size of color suppressed amplitudes. In terms
of the angles ., / of the unitarity triangle and CP asym-
metries S�
�� and C�
�� in B ! �
��,

tc �

������������������������������������������������������������������������������

Rc
�1
 B�
�� cos2.
 S�
�� sin2.�

2sin2/

s
; (9)

with 
Rc � �Br�B0 ! �
���+B��=�2Br�B� ! �0���+B0�

and B�
�� � �1� C2
�
�� � S2�
���1=2. Equations (8) and

(9) improve on relations between B ! �� and B ! �‘ 
�
derived earlier, such as in Ref. [14], because they do not
rely on expanding in (s�

����������
mb!

p
� or require the use of QCD

sum rules for input parameters to calculate tc.
Using the latest B ! �� data [1], Eq. (8) gives

f0in � jVubjf
�0� � �7:2� 1:8� � 10�4: (10)

This estimate of 25% uncertainty accounts for the 10%
experimental uncertainty, and �20% theory uncertainty
from perturbative and power corrections. The experimental
uncertainty includes / � 70� � 15�, which covers the
range from global fits, and that preferred by the SCET
based B ! �� method from Ref. [15]. As noted in [7], the
dependence of jVubjf
�0� on / is mild for larger /’s.
Estimates for perturbative and power corrections to
Eq. (8) are each at the �10% level even when ‘‘chirally
enhanced’’ terms are included [14,16].

Next we consider lattice QCD input points, fkin, which
are crucial in fixing the form factor normalization. The
staggered fermion �detM�1=4 trick might add model depen-
dence, but we take the agreement with data in [17] to
indicate that this is small. References [2,3] find consistent
results with different heavy quark actions. As our default
we use [2] since they have a point at larger q2:

f1in � f
�15:87� � 0:799� 0:058� 0:088;

f2in � f
�18:58� � 1:128� 0:086� 0:124;

f3in � f
�24:09� � 3:262� 0:324� 0:359:

(11)

The first errors in (11) are statistical, �3i, and the second
are 11% systematic errors, �yfiin, with y � 0:11. For the
lattice error matrix, we use Eij � 32

i �ij 
 y2fiinf
j
in, which

takes 3i uncorrelated and includes 100% correlation in the
systematic error. Of the 11 reported lattice points, we use
only three at separated q2. This maximizes the shape
information while minimizing additional correlations that
may occur in neighboring points.

Chiral perturbation theory (ChPT) gives model indepen-
dent input for f
 (and f0) when E� �m�, namely,

f
�q
2�E����

gfBmB

2f��E�
mB� �mB�

�
1
O

	
E�

)


�
; (12)

where g is the B�B� coupling and fB the decay constant.
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Possible pole contributions from the low lying J� �
0
; 1
; 2
 states vanish by parity and angular momentum
conservation. The first corrections scale as E�=), where
)� 600 MeV is the mass splitting to the first radially
excited 1� state above the B�. We take g � 0:5. Using
heavy quark symmetry, this is compatible with ��D�
� and
D� Br ratios; updating the ChPT fit in [18] gives gD�D�

’

0:51 (at an order with no counterterm operators or 1=mc
corrections absorbed in g). For the lattice average Ref. [19]
gives fB � 189 MeV. Thus,
0.8

0.6

0.4

0.2

0.0
2520151050 q2

1- q2( ) f (q2)

f = f0

f = f+

FIG. 1 (color online). Upper and lower bounds on the form
factors from dispersion relations, where q̂2 � q2=m2

B� . The over-
lapping solid black lines are bounds F� derived with the SCET
point, 3 lattice points, and the ChPT point (diamonds with error
bars). The dashed lines are the bounds derived using instead four
lattice points (shown by the dots). Input point errors are not
included in these lines, and are analyzed in the text.
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f4in � f
�26:42� � 10:38� 3:63; (13)

where this fairly conservative 35% error is from uncer-
tainty in gfB, and from the m�=)� 23% corrections.

Determining f
.—To determine f
�t� we drop ak�6 in
Eq. (3), and take a5 ! a5�1� z2��1=2, which properly
bounds the truncation error [20]. The f0–4 input points
then fix a0–4 as functions of a5. Functions that bound f
�t�
are determined from the maximum and minimum values of
a5 satisfying (7) with nmax � 5. Thus we solve
18:3a0 
 3:96a1 
 0:857a2 
 0:185a3 
 0:0401a4 
 0:008 87a5 � f0=jVubj;

37:8a0 
 0:960a1 
 0:0244a2 
 0:000 619a3 
 1:57� 10�5a4 
 4:00� 10�7a5 � f1; . . . ;

304:0a0 � 103:6a1 
 35:3a2 � 12:0a3 
 4:10a4 � 1:49a5 � f4; a20 
 a21 
 a23 
 a24 
 a25 � 1:

(14)
In Eq. (3) this yields two solutions, F�, with parameters

f
�t� � F��t; ff0=jVubj; f1; f2; f3; f4g�: (15)

To see how well these solutions bound the form factor, we
fix jVubj � 3:6� 10�3, fi � fiin, and plot the bounds as
the two black solid lines in Fig. 1. The curves lie on top of
each other. For comparison we show dashed lines for the
bounds on f
 and f0 obtained using four lattice points
(shown as dots). With these inputs the constraint f
�0� �
f0�0� is less effective than using the SCET point.

jVubj from total Br fraction.—Equating Eq. (1) with the
theoretical rate obtained using Eq. (15) gives an analytic
equation for jVubj. With fi � fiin the solution is

jVubj � �4:13� 0:21� 0:58� � 10�3: (16)

The first error is experimental, 5.2%, propagated from
Eq. (1). The second error, 14%, is from theory and is
broken down in Table I. It is dominated by the input points.
The bound uncertainty from the choice of solution is <1%
(but would grow to �12% without the SCET point). The
error from mb and the order in the OPE and are very small
because shifts in the normalization through ��0�
f


are com-
pensated by shifts in the an coefficients, except for the last
term a5, which gives a small contribution. To ensure con-
sistency with the dispersion bounds the input point uncer-
tainty is calculated using the Lellouch method of
generating random points from Gaussians [11], giving
103jVubj � �3:96� 0:20� 0:56�. Our distributions were
determined using Eqs. (10), (11), and (13) and the cor-
relation matrix Eij. Taken individually the SCET and
ChPT points give �5% error, so the lattice uncertainty
dominates.
jVubj from q2 spectra.—Results for partial branching

fractions (Brexpi � �Bri) over different bins in q2 are also
available. CLEO [21] and BELLE [4] present results for
3 bins with untagged and �
 semileptonic tags, respec-
tively. BABAR [5] recently presented total rates from
hadronic and leptonic �
 and �0 tags as well as �


semileptonic tagged data in 3 bins and untagged data
over 5 bins. By fitting to these 17 pieces of data with
MINUIT, we exploit the q2 shape information. To do this,
we define

�2 �
X3
i;j�1

�fiin � fi��fjin � fj��E�1�ij 

�f0in � f0�2

��f0�2



�f4in � f4�2

��f4�2



X17
i�1

�Brexpi � Bri�Vub; F���
2

��Bri�2
; (17)

and minimize �2 as a function of jVubj and f0–4. �2
TABLE I. Summary of theoretical uncertainties on jVubj.
Results are shown for an analysis from the total branching
fraction, �jVubj

Br, and from using the d�=dq2 spectrum,
�jVubj

q2 . For the input point error we quote the average from F�.

Type of error Variation from �jVubj
Br �jVubj

q2

Input points 1-3 correlated errors �14% �12%
Bounds F
 versus F� �0:6% �0:04%
mpole

b 4:88� 0:40 �0:1% �0:2%
OPE order 2 loop ! 1 loop �0:2% 
0:3%
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0.8

1.2
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FIG. 3 (color online). The curves are as in Fig. 2, but for the
decay rate.

0.8

0.6

0.4

0.2

0.0
2520151050 q2

1- q2( ) f (q2)+

SCET pt.
Lattice points

ChPT pt.

with  SCET  point
without  SCET  point

FIG. 2 (color online). Results from the �2 fit of jVubj and f0–4

to the q2 spectra (q̂2 � q2=m2
B� ). The two solid lines are obtained

using either the F
 or the F� solutions from Eq. (15). The two
dashed lines repeat this analysis without using the SCET point.
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contains both experimental and theoretical errors, with E�1

the inverse error matrix. By allowing f0–4 in F� to move
away from f0–4in , the theoretical rate is allowed to adjust
itself based on the experimental q2 shape.

Minimizing (17) gives �2=�dof� � 1:04 and

jVubj � �3:54� 0:47� � 10�3: (18)

Results for f
�q2� and d�=dq2 are shown by the black
solid curves in Figs. 2 and 3. Equation (18) has a total error
of 13%. If we fix f0–4 � f0–4in , then the experimental error
is 4.9%, i.e., �jVubj � �0:17. The remainder, �jVubj �
�0:44, is from the input points, so the q2 spectra reduced
the theory error to 12%. Other uncertainties are small as
shown in Table I. The q2 spectra favor a larger form factor
between the lattice and SCET points, thus decreasing jVubj
from (16). Using Eqs. (10) and (13) this fit yields

f
�0� � 0:227� 0:047; gfB � 96� 29 MeV; (19)

consistent with our inputs. This f
�0� has 21% error.
Removing the SCET point f0 from Eq. (17) leaves only

semileptonic data and gives the fit shown by the dashed red
lines in Figs. 2 and 3. The spectrum is now determined less
precisely at small q2, since these data bound only the area
in the smallest q2 bin. The result is jVubj� �3:56�0:48��
10�3. It has the same input point error as Eq. (18) and a bit
larger bound error, �jVubj � 1:8%. Turning the use of
Eq. (10) around, we can combine it with f
�0� to get an
independent method for jVubj from the nonleptonic data.
The semileptonic fit gives f
�0� � 0:25� 0:06, so
Eq. (10) yields jVubj

nonlep � �2:9� 1:0� � 10�3.
Our final result for jVubj is given in (18). The final theory

error is dominated by the lattice points, and is very close to
their error. It will decrease with this error in the future. See
also [22]. To go beyond the analysis here, it will be
interesting to study the additional error correlation implied
by the dispersion relations when lattice input points are
included that are closer together.
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