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We obtain infinite classes of new Einstein-Sasaki metrics on complete and nonsingular manifolds. They
arise, after Euclideanization, from BPS limits of the rotating Kerr–de Sitter black hole metrics. The new
Einstein-Sasaki spaces Lp;q;r in five dimensions have cohomogeneity 2 and U�1� �U�1� � U�1� isometry
group. They are topologically S2 � S3. Their AdS/CFT duals describe quiver theories on the four-
dimensional boundary of AdS5. We also obtain new Einstein-Sasaki spaces of cohomogeneity n in all odd
dimensions D � 2n� 1 � 5, with U�1�n�1 isometry.
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The AdS/CFT correspondence [1] relates type IIB string
theory on AdS5 � K5 backgrounds to conformal field
theories on the four-dimensional boundary of the AdS5,
where K5 is a complete five-dimensional Einstein space of
positive Ricci curvature. To maintain supersymmetry, it is
necessary that K5 admit a Killing spinor; i.e., that it be an
Einstein-Sasaki (ES) space. Thus, the construction of such
ES spaces provides an important testing ground for the
AdS/CFT correspondence.

The most studied case is when K5 is taken to be the
5-sphere, which admits the maximal number, 4, of Killing
spinors, and it has an isometry of SO�6�. The correspond-
ing boundary theory is an N � 4 supersymmetric super-
conformal field theory. Another extensively studied case is
when K5 is T1;1, which is an homogeneous ES space with
SU�2�2 �U�1� isometry. Recently, an infinite class of five-
dimensional ES spaces was obtained [2]. These spaces,
denoted by Yp;q, are characterized by two coprime positive
integers p and q with q < p. In the construction in [2], a
local family of ES metrics with a nontrivial continuous
parameter was first obtained, and then it was shown that if
the parameter takes rational values p=q in the appropriate
range, the metrics extend smoothly onto the complete and
nonsingular manifolds Yp;q. The spaces have SU�2� �
U�1� �U�1� isometry. These manifolds were shown to
be dual to an infinite family of superconformal quiver
gauge theories [3].

It is therefore of great interest to construct new ES
spaces by further reducing the isometry. It was shown [4]
that the ES spaces Yp;q could be obtained in a straightfor-
ward manner by taking a certain limit of the Euclidean-
ized five-dimensional Kerr–de Sitter black hole metrics
found in [5]. Specifically, after Euclideanization the two
rotation parameters a and b were set equal and were al-
lowed to approach the limiting value that corresponds, in
the Lorentzian regime, to having rotation at the speed of
light at infinity.

In this Letter, we construct a vastly greater number of
Einstein-Sasaki spaces, in which a similar limit is taken but
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without requiring the rotation parameters to be equal. By
this means, we first obtain a family of five-dimensional
local ES metrics with two nontrivial continuous parame-
ters. We then show that if these are appropriately restricted
to be rational, the metrics extend smoothly onto complete
and nonsingular manifolds, which we denote by Lp;q;r,
where p, q, and r are coprime positive integers with 0<
p � q, with 0< r< p� q, and with p and q each co-
prime to r and to s � p� q� r. The metrics have U�1� �
U�1� �U�1� isometry in general, enlarging to SU�2� �
U�1� �U�1� in the special case p� q � 2r, which re-
duces to the previously obtained spaces Yp;q �
Lp�q;p�q;p. The new ES spaces Lp;q;r provide a greatly
enlarged class of backgrounds for testing the AdS/CFT
correspondence, by matching them to the boundary dual
superconformal quiver gauge theories.

The local ES metrics that we construct are obtained from
the rotating AdS black hole metrics in D � 5 dimensions
[5] and in D> 5 [6,7]. Our principal focus is on the
Euclidean-signature case with positive Ricci curvature,
but it is helpful to think first of the metrics in the
Lorentzian regime, with negative cosmological constant
� � �g2. It was shown in [8] that the energy and angular
momenta of the D � 2n� 1 dimensional Kerr–AdS black
holes are given by
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where AD�2 is the volume of the unit (D� 2) sphere,
�i � 1� g2a2i , and ai are the n independent rotation
parameters. As discussed in [9], the BPS limit can be found
by studying the eigenvalues of the Bogomol’nyi matrix
arising in the AdS superalgebra from the anticommutator
of the supercharges. In D � 5, these eigenvalues are then
proportional to E	 gJ1 	 gJ2. The BPS limit is achieved
when one or more of the eigenvalues vanish. For just one
zero eigenvalue, the four cases are equivalent under rever-
sals of the angular velocities, so we may without loss of
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generality consider E� gJ1 � gJ2 � 0. From (1), we see
that this is achieved by taking a limit in which ga1 and ga2
tend to unity, namely, by setting ga1 � 1� 1

2 ��, ga2 �
1� 1

2 ��, rescalingm according tom � m0�3, and sending
� to zero. As we shall see, the metric remains nontrivial in
this limit. An equivalent discussion in the Euclidean re-
gime leads to the conclusion that in the corresponding
limit, one obtains five-dimensional Einstein metrics admit-
ting a Killing spinor. (The above scaling limit in the
Lorentzian regime, for the special case � � �, was studied
recently in [10].)

To present our new ES metrics, we start with the five-
dimensional rotating AdS black hole solutions, and
Euclideanize by making the analytic continuations t!
i�=
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�

p
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����
�

p
, a! ia, b! ib in the metric (5.22) of

[5]. Next, we implement the ‘‘BPS scaling limit,’’ by
setting

a � ��1=2
�
1�

1

2
��

�
; b � ��1=2

�
1�

1

2
��

�
;

r2 � ��1�1� x��; M �
1

2
��1#�3

(2)

and then sending �! 0. The metric becomes

�ds25 � �d�� %�2 � ds24; (3)

where
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It is easy to check that the four-dimensional metric in (4) is
Einstein. The parameter # is trivial, and can be set to any
nonzero constant, say # � 1, by rescaling �, �, and x.
(The round S5 arises when # � 0.) The metrics depend
on two nontrivial parameters, which we can take to be �
and � at fixed #. It is sometimes convenient to retain #,
allowing it to be determined as the product of the three
roots xi of x.

It is clear that the D � 5 metric can be viewed as a U�1�
bundle over a four-dimensional Einstein-Kähler metric,
with Kähler 2-form given by J � 1

2d%. Thus, the five-
dimensional metric is ES (with R#+ � 4�g#+).

Having obtained the local form of theD � 5 ES metrics,
we can now turn to an analysis of the global structure. The
metrics are, in general, of cohomogeneity 2, with toric
principal orbits U�1� �U�1� �U�1�. The orbits degener-
ate at ' � 0 and ' � 1

2�, and at the roots of the cubic
function x appearing in (4). In order to obtain metrics on
07110
complete nonsingular manifolds, one must impose appro-
priate conditions to ensure that the collapsing orbits extend
smoothly, without conical singularities, onto the degener-
ate surfaces. If this is achieved, one can obtain a metric on a
nonsingular manifold, with 0 � ' � 1

2� and x1 � x � x2,
where x1 and x2 are two adjacent real roots of x. In fact,
since x is negative at large negative x and positive at large
positive x, and since we must also have x > 0 in the
interval x1 < x< x2, it follows that x1 and x2 must be the
smallest two roots of x.

The easiest way to analyze the behavior at each collaps-
ing orbit is to examine the associated Killing vector ‘
whose length vanishes at the degeneration surface. By
normalizing the Killing vector so that its ‘‘surface gravity’’
, is equal to unity, one obtains a translation generator
@=@. where . is a local coordinate near the degeneration
surface, and the metric extends smoothly onto the surface
if . has period 2�. The ‘‘surface gravity’’ is

,2 �
g#+�@#‘2��@+‘2�

4‘2
(5)

in the limit that the degeneration surface is reached.
The normalized Killing vectors that vanish at the degen-

eration surfaces ' � 0 and ' � 1
2� are simply given by

@=@( and @=@ , respectively. At the degeneration surfaces
x � x1 and x � x2, we find that the associated normalized
Killing vectors ‘1 and ‘2 are given by

‘i � ci
@
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@
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@
@ 

; (6)

where the constants ci, ai, and bi are given by

ai �
�ci
xi � �

; bi �
�ci
xi � �

;

ci �
��� xi���� xi�

2��� ��xi � ��� 3x2i
:

(7)

Since we have a total of four Killing vectors @=@(,
@=@ , ‘1, and ‘2 that span a three-dimensional space, there
must exist a linear relation among them. Since they all
generate translations with a 2� period repeat, it follows
that unless the coefficients in the linear relation are ration-
ally related, then, by taking integer combinations of trans-
lations around the 2� circles, one could generate a
translation implying an identification of arbitrarily nearby
points in the manifold. Thus one has the requirement for
obtaining a nonsingular manifold that the linear relation
between the four Killing vectors must be expressible as

p‘1 � q‘2 � r
@
@(

� s
@
@ 

� 0 (8)

for integer coefficients �p; q; r; s�, which may be assumed
to be coprime. All subsets of three of the four integers must
be coprime too, since if any three had a common divisor k,
then dividing (8) by k would show that the direction
associated with the Killing vector whose coefficient was
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not divisible by k would be identified with period 2�=k,
thus leading to a conical singularity. Furthermore, p and q
must each be coprime to each of r and s, since otherwise at
the surfaces where ' � 0 or 1

2� and x � x1 or x � x2— at
which one of @=@( or @=@= and simultaneously one of ‘1
or ‘2 vanish—there would be conical singularities (see
also [11,12]).

From (8) and (6), we have

pa1 � qa2 � r � 0; pb1 � qb2 � s � 0;

pc1 � qc2 � 0:
(9)

It then follows that all ratios among the four quantities

a1c2 � a2c1; b1c2 � b2c1; c1; c2 (10)

must be rational. Thus to obtain a metric that extends
smoothly onto a complete and nonsingular manifold, we
must choose the parameters in (4) so that the rationality of
the ratios is achieved. In fact, it follows from (7) that

1� ai � bi � 3ci � 0; (11)

for all roots xi, and using this one can show that there are
only two independent rationality conditions following
from the requirements of rational ratios for the four quan-
tities in (10). One can also see from (11) that

p� q� r� s � 0; (12)

so the further requirement that all triples among the
(p; q; r; s) also be coprime is automatically satisfied.

The upshot from the above discussion is that we can
have complete and nonsingular five-dimensional ES spaces
Lp;q;r, where

pc1 � qc2 � 0; pa1 � qa2 � r � 0: (13)

These equations and (11) allow one to solve for �, � and
the roots x1 and x2 for positive coprime integer triples
(p; q; r). The requirements 0 � x1 � x2 � x3 and � �
x2, � � x2 restrict the integers to the domains 0<p � q
and 0< r < p� q. All such coprime triples with p and q
each coprime to r and s yield complete and nonsingular ES
spaces Lp;q;r, and so we get infinitely many new examples.

The volume of Lp;q;r (with � � 1) is given by

V �
�2�x2 � x1���� �� x1 � x2��

2k��
; (14)

where � is the period of the coordinate �, and k �
gcd�p; q�. Note that the ((; ) torus is factored by a freely
acting Zk, along the diagonal. � is given by the minimum
repeat distance of 2�c1 and 2�c2, and so � �
2�kjc1j=q. There is a quartic equation expressing V purely
in terms of (p; q; r). Writing V � �3�p� q�3W=�8pqrs�,
we find
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0 � �1� f2��1� g2�h4� � 2h2�2�2� h��
2 � 3h2��W

� 8h��2� h��2 � h2��30� 9h���W2

� 8�2� 9h��W3 � 27W4; (15)

where f � �q� p�=�p� q�, g � �r� s�=�p� q�, and
h	 � f2 	 g2. The central charge of the dual field theory
is rational if W is rational, which is easily achieved.

If one sets p� q � 2r, i.e., r � s, implying � and �
become equal, our ES metrics reduce to those in [2], and
the conditions we have discussed for achieving complete
nonsingular manifolds reduce to the conditions for the Yp;q

obtained there, with Yp;q � Lp�q;p�q;p. The quartic (15)
then factorizes to quadratics with rational coefficients,
giving the volumes found in [2].

Further special limits also arise. For example, if we take
p � q � r � 1, the roots x1 and x2 coalesce, � � �, and
the metric becomes the homogeneous T1;1 space, with the
four-dimensional base space being S2 � S2. In another
limit, we can set # � 0 in (4) and obtain the round metric
on S5, with CP2 as the base. (In fact, we obtain S5=Zq if
p � 0.) Except in these special ‘‘regular’’ cases, the four-
dimensional base spaces themselves are singular, even
though the ES spaces Lp;q;r are nonsingular. The ES space
is called quasiregular if @=@� has closed orbits, which
happens if c1 is rational. If c1 is irrational, the orbits of
@=@� never close, and the ES space is called irregular.

Our construction generalizes straightforwardly to all
odd higher dimensions D � 2n� 1. We take the rotating
Kerr–de Sitter metrics obtained in [6,7], and impose the
Bogomol’nyi conditions E� g�iJi � 0, where E and Ji
are the energy and angular momenta that were calculated
in [8], and given in (1). We find that a nontrivial BPS limit
exists where gai � 1� 1

2�i� and m � m0�
n�1. After

Euclideanization, we obtain D � 2n� 1 dimensional ES
metrics ds2, given by

�ds2 � �d�� %�2 � d �s2; (16)

with R#+ � 2n�g#+, where the 2n-dimensional metric d �s2

is Einstein-Kähler, with Kähler form J � 1
2d%, and
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where �i#2
i � 1.

The discussion of the global properties is completely
analogous to the one we gave previously for the five-
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dimensional case. The n Killing vectors @=@’i vanish at
the degenerations of the U�1�n�1 principal orbits at #i �
0, and conical singularities are avoided if each coordinate
’i has period 2�. The Killing vectors

‘i � c�i�
@
@�

�
X
j

aj�i�
@
@’j

(18)

vanish at the roots x � xi of F�x�, and have unit surface
gravities there, where

aj�i� � �
c�i��j
�j � xi

; c�i��1 �
X
j

xi
�j � xi

� 1: (19)

The metrics extend smoothly onto complete and nonsin-
gular manifolds if p‘1 � q‘2 � �jrj@=@’j � 0 for co-
prime integers �p; q; rj�, with p and q each coprime to
each of the ri. This implies the algebraic equations

pc�1� � qc�2� � 0; paj�1� � qaj�2� � rj � 0;

(20)

determining the roots x1 and x2, and the parameters �j.
The two roots of F�x� must be chosen so that F > 0 when
x1 < x< x2. With these conditions satisfied, we obtain
infinitely many new complete and nonsingular ES spaces
in all odd dimensions D � 2n� 1. Since it follows from
(20) that p� q � �jrj, these ES spaces, which we denote
by Lp;q;r1;...;rn�1 , are characterized by specifying (n� 1)
coprime integers, with p and q each coprime to each ri,
which must lie in an appropriate domain. The n torus of the
’j coordinates is, in general, factored by a freely acting Zk,
where k � gcd�p; q�. The volume (with � � 1) is given by

V �
jc�1�j
q

A2n�1

�Y
i

�
1�

x1
�i

�
�

Y
i

�
1�

x2
�i

�	
; (21)

since � is given by 2�kjc�1�j=q, and A2n�1 is the
volume of the unit (2n� 1) sphere. In the special case
that the rotations �i are set equal, the metrics reduce to
those obtained in [13].

Finally, we note that we also obtain new complete and
nonsingular Einstein spaces inD � 2n� 1 that are not ES,
by taking the Euclideanized Kerr–de Sitter metrics of [6,7]
and applying the analogous criteria for nonsingularity at
degenerate orbits that we have introduced in this Letter.
Thus we Euclideanize the metrics given in Eq. (3.5) of [6]
by sending �! �i�, ai ! i�i, take Killing vectors ‘i that
vanish on two adjacent horizons, have unit surface grav-
ities, obtained from the ‘ given in Eq. (4.7) of [6] by
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dividing by the surface gravity in Eq. (4.17), and then
impose the rationality conditions following from p‘1 �
q‘2 ��jrj@=@’j � 0. This gives infinitely many new
examples of complete and nonsingular Einstein spaces,
beyond those obtained in [6]. They are characterized by
(n� 2) coprime integers, and we denote them by
Kp;q;r1;...;rn .

Further details of these results will appear in [14].
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Note added.—In a private communication, Galicki has
told us of a simple argument showing that all the Lp;q;r

spaces are diffeomorphic to S2 � S3, since the total space
of the Calabi-Yau cone can be viewed as a symplectic
quotient of C4 by the diagonal action of S1�p; q;�r;�s�
with p� q� r� s � 0.
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