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Nearly Smooth Granular Gases
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Hydrodynamic equations for nearly smooth granular gases are derived from the pertinent Boltzmann
equation. The angular velocity distribution field needs to be included in the set of hydrodynamic fields.
The angular velocity distribution is strongly non-Maxwellian for the homogeneous cooling state and any
homogeneous steady state. In the case of steady wall-bounded shear flows the average spin (created at the
boundaries) has a finite penetration length into the bulk.
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In spite of many successes of models of granular gases in
which tangential restitution is not accounted for [1], it is
clear that friction is always present and that in numerous
cases (cf., e.g., the recent study of the effects of friction on
granular patterns [2] and friction induced hysteresis [3]) it
is consequential. Furthermore, it is known that friction
induces nonequipartition in the homogeneous cooling
state; cf., e.g., [4–8]. It is therefore curious that only a
small proportion of the literature is devoted to frictional
granular hydrodynamics; cf., e.g., [9–11].

The study of gases whose constituents experience fric-
tional interactions started (in 1894) in the realm of mo-
lecular gases [12,13]. Applications include granular
celestial systems [14]. Previous kinetic theoretical studies
of frictional granular hydrodynamics, e.g., [10,11], used
the Enskog equations, in conjunction with an ansatz for the
form of the distribution function, to produce constitutive
relations. Their ansatz is based on Maxwellian distribu-
tions for both the velocity and angular velocity. It is
a priori justified in the near-rough near-elastic case (strong
rotation-translation coupling), where near equipartition is
expected, but not in the near-smooth case. Unlike in the
molecular case, the model commonly used for the descrip-
tion of granular gases is that of smooth particles (usually
spheres). The goal here is to study the near-smooth case, as
a perturbation around the smooth limit. Specifically, we
consider a monodisperse system of spherical grains of
mass m � 1, diameter d, and moment of inertia I [for
homogeneous spheres, I � 2

5 �
d
2�
2] each. Denote the gyra-

tion ratio of a grain by ~I (with ~I � 4I
d2

). The velocity of
particle ‘‘i’’ is denoted by vi, and its angular velocity by
!i. It is convenient to define a ‘‘spin variable,’’ si � d

2!i.
Consider a collision between sphere ‘‘1’’ and sphere

‘‘2.’’ Let k be a unit vector pointing from the center of
sphere 2 to the center of sphere 1. The relative velocity of
sphere 1 with respect to sphere 2, at the point of contact, is
g12 � v12 � k� s12, where v12 � v1 � v2, and s12 �
s1 � s2. In the following, precollisional entities are
primed. The collision model employed here is the same
as in [6,11]. During a collision the normal component of
the relative velocity changes according to k � g12 �
05=95(6)=068002(4)$23.00 06800
�ek � g0
12, where e is the coefficient of normal restitution.

The change of the tangential component of g is modeled by
k� �k� g12� � �����k� �k� g0

12�, where � is the
angle between �k and g0

12: cos� � �
k�g0

12

g012
� �

k�v012
g012

,
where g012 � kg0

12k (hence 0 � � � 

2 ), and

���� � min
�
�0;�1�

1� ~I
~I

�1� e��f cot�
�
; (1)

where�f is the Coulomb friction coefficient, and �0 is the
‘‘roughness coefficient’’ (which is not truly a constant in
reality; cf., e.g., [15]; note also that the model used here is a
simplification of reality; see, e.g., [16] and references
therein). Equation (1) follows from the requirement that
���� is continuous across the transition [at � � �0, where
from Eq. (1) cot�0 �

~I
1�~I

1��0

�f�1�e�
] between dominance by

(Coulomb) sliding for � > �0, and ‘‘sticking’’ for � � �0;
see [6,11]. This model and the conservation laws imply
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1� ~I
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where i � 1; 2, �1 � 1, and �2 � �1. The Jacobian of
this transformation is given by

J��� �
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@�v01; v

0
2; s

0
1; s

0
2�

�

�
e�2

0 � < �0

ej����j � > �0

�
: (3)

Let f�v1; s1; r; t��� f1� denote the single particle distri-
bution (of the velocity and spin) function at point r and
time t. The Boltzmann equation satisfied by f1 is

@f1
@t

� v1 � rf1 � B�f; f; v1; s1�

� d2
Z
k�v12>0

dv2ds2dk�k � v12�

�

�
1

eJ���
f01f

0
2 � f1f2

�
: (4)

The basic premise of the Chapman-Enskog expansion is
that the dependence of the distribution function on space
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(i.e., r) and time, t, can be replaced by a dependence on the
‘‘slow’’ fields, i.e., the densities of the (collisional) con-
served entities. Therefore the number density, n�r; t� �R
f�v; s; r; t�dvds, the momentum density, and hence the

velocity, V�r; t� � 1
n�r;t�

R
vf�v; s; r; t�dvds, are hydrody-

namic fields. Let u � v� V�r; t� denote the peculiar ve-
locity. The (translational) granular temperature,
T�r; t� � 1

n�r;t�

R
u2f�v; s; r; t�dvds is nearly conserved in

the near-elastic, nearly smooth case, and is therefore a
hydrodynamic field. In the smooth limit the spin is de-
coupled from the translational degrees of freedom; hence
the number density corresponding to each value of the spin,
n�s; r; t� �

R
f�v; s; r; t�dv, is conserved as well, as is the

(more convenient to use) relative spin distribution field,
��s; r; t� � n�s;r;t�

n�r;t� . Hence the infinite set of relative spin
dependent number densities, ��s; r; t�, qualify as hydro-
dynamic fields. In other words, the system is considered to
be a mixture, whose ‘‘components’’ are indexed by their
respective values of the spin. A field of interest is the
velocity field corresponding to particles of spin s:
U�s; r; t� � 1

n�s;r;t�

R
vf�v; s; r; t�dv. The latter field is not

hydrodynamic, as it does not correspond to a conserved
entity, and, indeed, it is enslaved to the slow fields, i.e.,
expressible in terms of them (see below). A standard
procedure now produces the continuum equations of mo-
tion from the Boltzmann equation:

n
DV�
Dt

�
@
@r�

P�� � 0;

n
DT
Dt

� 2
@V�
@r�

P�� � 2
@Q�
@r�

� �2�;

n
D��s�
Dt

�
Z
B�f; f; v; s�dv

�r � �n��s�!V�s��;

(5)

where D
Dt is the material derivative, !V�s; r; t� �

U�s; r; t� � V�r; t� denotes the relative velocity between
06800
particles of spin s and the hydrodynamic velocity, and the
summation convention is assumed. The stress tensor is
given by P�� �

R
u�u�fduds, the heat flux vector is

given by Q� � 1
2

R
u�u

2fduds, and the energy sink term

is � � �
R
dv1ds1

v21
2 B�f; f; v1; s1�.

In this Letter we consider the (nearly smooth) case �0 �
�1 and small friction �f. We further specialize, for con-
venience, to the case �0 �



2 , which corresponds to 1��0

�f
<

1. In physical terms, this means that � is taken to be nearly
constant (as in some models [4,10]), except at near grazing
collisions. In this case, �f affects the results only to third
order in perturbation theory (not presented here). The small
parameters employed in the perturbative solution of the
Boltzmann equation are therefore # � 1� e2 (the degree
of inelasticity), #3 � 1� �2

0 (the smoothness parameter),
and the Knudsen number, K � ‘

L (‘ � 1

nd2

is the mean free
path, n the number density, and L a macroscopic scale),
which is a measure of the gradients.

The zeroth order solution (# � #3 � K � 0) of the
Boltzmann equation reads f0�u; s� � fM�u���s�, where
fM�u� � n� 3

2
T�
3=2e�3u2=2T , and ��s� is practically any

normalizable distribution, since at this order the spins are
decoupled from translation. Next, let f�v; s� � f0�u; s��
�1�(�u; s�
, and expand ( as follows: ( � K(K �
#(# � #3(3 � K#(K# � � � � , where, e.g., (# is the
O�#� term in the expansion.

The perturbative solution of the Boltzmann equation, in
powers of K, #, and #3, involves the repeated solution of
~L(given order � Rsame order, where Rsame order depends on pre-
vious orders, and the linearized Boltzmann operator, ~L, is
given by ~L( � d2

R
k�v12>0 dv2ds2dk�k � v12�f0�(0

1 �

(0
2 �(1 �(2�. The heavy algebra involved in these cal-

culations has been performed using a symbolic processor.
The resulting constitutive relations, up to
O�#2; #23; ##3; K#; K#3�, are presented next [the O�K2�
terms are the same as in the smooth case [17] ]. The stress
tensor is given by
P�� �
1

3
nT!�� � 2n‘�

����
T

p @V�
@r�

�
n#23

�1� ~I�2

�
0:0129~I2

Z
s12�s12���s1���s2�ds1ds2 � 0:000 599TB��

�
(6)

where !�� is Kronecker’s delta, � � 0:325� 0:0577#�, with #� � #� #3
~I

1�~I
, and B�� �

R
��s�������ds, where

��� � 1
��s�

@
@s�

���s��S� s���. The spin density is S�r; t� �
R
s��s; r; t�ds, and �A denotes the traceless symmetric part of

the tensor A. The heat flux is given byQ���2,n‘
����
T

p
@T
@r�

�2-‘T3=2 @n
@r�

, where ,�0:205�0:0536#�, and - � 0:1054#�.
The energy sink term is given by �� n

‘

����
T

p
��T��Trot�2�S2�, where ��

�������
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1
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q
�
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�2#23, and Trot�r; t� �
R
�s� S�r; t�
2��s; r; t�ds is the rotational temperature. Note that S and Trot are not

independent hydrodynamic fields, since they are moments of the hydrodynamic fields, ��s; r; t�. Next, !V, which appears
in the equation of motion for ��s�, is given by
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‘
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T
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FIG. 1. The rescaled spin distribution, F�8�, for the homoge-
neous cooling state (full line) and a Gaussian distribution
(dashed line) with the same value of Trot=T, for # � #3 � 0:1.
Recall that the rescaled spin 8 equals s=

��������
#3T

p
.
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FIG. 2. T
TB

(dashed line) and Sz
Sz�B�

(full line) in a wall-bounded
shear flow, with # � #3 � 0:1, 1

00
d
� � 0:2, ( � 0:15, and � �

0:01, and results of MD simulations (crosses for spin, circles for
temperature) of 131 072 spheres with the same parameters (and
rough walls). The MD temperature profile is slightly below the
theoretical prediction (and exhibits a ‘‘plug’’—see [1] for the
possible mechanism); this seems to be a finite density effect.

PRL 95, 068002 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
5 AUGUST 2005
Notice that !V�s� � 0 due to spatial gradients. The termR
Bdv in Eq. (5) is not presented here in full for sake of

brevity. It can be expressed as follows:
Z
B�f; f; v; s�dv �

#3
�1� ~I�2

n
‘

����
T

p
rs �G�s�; (8)

where G is specified below for a special case. It follows
from Eqs. (5), (7), and (8) that the spin number densities
satisfy a (generalized) diffusion equation, as expected for a
‘‘mixture.’’ Note that to linear order in #3 the constitutive
relations correspond to smooth grains with an effective
coefficient of normal restitution, as in [11]. This property
does not hold at higher orders in #3 [which are often
consequential; see, e.g., Eq. (9)].

Consider first the homogeneous cooling state. Here all
spatial derivatives vanish, as does the velocity, so that the
second and third of Eqs. (5) read, respectively, n dTd/ �

�2 ‘���
T

p � and d��s�
d/ � #3

�1�~I�2
rs �G�s�, where / �

R
t
0
T1=2
‘ dt

0

represents the number of accumulated collisions per parti-
cle; cf., e.g., [4]. It now follows that

dT
d/

� �2�T � 2�Trot � 4�S2;

dTrot
d/

� 0T � 21Trot � 2S2;
dS2

d/
� �!S2;

(9)

where 1 � #3
�1�~I�2

�d�2� � 0:207#3�, 0 � 0:109
#23

�1�~I�2
, 2 �

0:369
#23

�1�~I�2
, ! � #3

�1�~I�2
�4d�2� � 0:467#3�, and d�2� ������

4
3


q
�1� ~I��13 � 0:003 33#� 0:619~I�2:55

10�~I�1�
#3�. Equation (9)

agrees with the mean field result of [6]. The three eigen-
values of Eq. (9) are negative. The long-time decay rate of
T and Trot follows Haff’s law. Also, limt!1

S2
T � 0 and

limt!1
Trot
T � r, where r� 1

2����1�
��������������������������������
���1�2�20�

p

.

Since S2 decays to zero faster than T and Trot, it is justified
to consider the asymptotic time dynamics for the case S �
0. Next, multiplying the equation satisfied by � and by sisj
and integrating over s yields limt!1

1
T

R
sisj��s�ds � r!ij,

indicating that ��s� is isotropic. When ��s� depends on s
alone, the function G (whose dependence on the fields is
not presented above) is given by Gi � G�s�si, where

G �s� �
�
A��

#3
s
�BT � Cs2�

d�
ds

�
; (10)

where A � d�2� � 0:007 38#3, B � �1:81� 1:45 TrotT � �
10�2, and C � 3:41� 10�2. The equation satisfied by
��s� possesses a scaling solution of the form
4
s2��s; /� � 1���

T
p F�8� where 8 � s������

#3T
p , and F�8� satisfies

F88 �
F8
8
#3DC82 � 2B

#3C8
2 � B

�
F

82
#3�D� 2�C82 � 2B

#3C8
2 � B

� 0;

(11)

where D � #3A��1�~I�2����r�
#23C

. The normalizable solution of

Eq. (11) satisfies (at long times) F�8� � 82�D for large 8;
06800
i.e., it decays algebraically and, hence, ��s� � 1
T3=2

� s���
T

p ��D.

Figure 1 compares this solution with a Gaussian distribu-
tion for # � #3 � 0:1.

Next consider the general case of a homogeneous steady
state. In this case [see Eq. (7)] !V�s� � 0, and Eq. (5)
implies rs �G � 0. Multiplying rs �G by si and sisj, and
integrating over the spin, yields S � 0 and

R
sisj��s�ds /

!ij, respectively, indicating, again, that ��s� is isotropic.
Thus Gi � G�s�si, as given by Eq. (10). Using again the
equation rs �G � 0, with Gi � G�s�si, we obtain @

@s �

�s3G� � 0. The only normalizable solution of this equation
is G � 0. It now follows from Eq. (10) that ��8� � A0�B�

#3C82��A=2#3C, where A0 is a normalization constant;
hence the spin distribution decays algebraically for any
homogeneous steady state. Also, in this state Trot

T �
0:0543#3
A�0:214#3

.
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FIG. 3. Theoretical profile (full line) and MD results (crosses)
for VxVp for the same flow as in Fig. 2.
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Consider next a shear flow confined between two paral-
lel plates located at y � � �

2 moving in the x direction
with velocities �Vp, respectively. Let the hydrodynamic
fields depend on y alone and V � Vx�y�x̂. The following
boundary conditions are employed [18–20]: Pxy�B� �

�
��
3

p


6 (nB

������
TB

p
vs, Qy�B� � �

��
3

p


6 �(v2s �

3
2�TB�nB

������
TB

p
,

and Sz�B� � � d
2
dVx
dy where vs � Vp � Vx�

�
2� is the slip

velocity, ( is the wall roughness coefficient, � is the
rate of energy loss at the boundaries, and the subscript B
denotes values at the boundaries. The average number
density is taken to be 1

�

R�=2
��=2 n�y�dy � n0 (i.e., the

mean volume fraction is 00 �


6 n0d

3). It is convenient to

define a new spatial variable: = � 2
����
TB

p

�

Ry
0

dy0��������
T�y0�

p . To first

order in #3 the first and second of Eqs. (5) are spin
independent. Their solution is p0 �

1
3nT, Vx � C1

������
TB

p
=,

and T � B2TB=
2 � T0, where p0, C1, B2, and T0 are con-

stants fixed by the boundary conditions. Multiplying the
third of Eqs. (5) by sz, and integrating over the spin, yields

@2

@=2

�
Sz����
T

p

�
�#3Ca

�
1�

T0
T

�
1

=
@
@=

�
Sz����
T

p

�

�#3



TB
T

�
n0�
n‘

�
2
�
p0
TBn0

�
2
Cb

�Ca

�
1�

T0
T

��
1�2

T0
T

�
1

=2

��
Sz����
T

p

�
�0; (12)

where Ca � 1:274=Ct, Cb � 45�1� ~I�!=�#3Ct� with
Ct � �4:79� 2:06#��1� ~I� � �0:7358� 0:248~I�#3. The
theoretical results (in terms of the physical coordinate, y)
are presented in Figs. 2 and 3 alongside a comparison with
molecular dynamics (MD) simulations. An analysis of
Eq. (12) reveals that the spin produced at the boundaries
06800
decays as a function of the distance from the boundary, the
typical penetration depth being of the order of ‘����

#3
p . Also

notice (Fig. 3) the shear boundary layer, which was also
seen in other simulations [18].

Finally, as only the dilute case is considered here, the
stress tensor (being the average of a symmetric entity) is
symmetric; i.e., one does not obtain a micropolar theory
[21].
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