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Mott Transition and Kondo Screening in f-Electron Metals
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We study how a finite hybridization between a narrow correlated band and a wide conduction band
affects the Mott transition. At zero temperature, the hybridization is found to be a relevant perturbation, so
that the Mott transition is suppressed by Kondo screening. In contrast, a first-order transition remains at
finite temperature, separating a local-moment phase and a Kondo-screened phase. The first-order
transition line terminates in two critical end points. Implications for experiments on f-electron materials
such as the cerium alloy Ce0:8La0:1Th0:1 are discussed.
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The Mott transition, i.e., how electrons evolve from
localized to itinerant as a function of an external parameter
such as pressure, is a fundamental problem in condensed
matter physics. It is a key phenomenon in d-electron
materials, such as transition-metal oxides, in which a set
of bands with d character is well separated and close to the
Fermi level. In this case, the phase with localized electrons
is insulating, and that with itinerant electrons is metallic.
Dynamical mean-field (DMFT) studies [1] have deepened
our understanding of this phenomenon and led to many
interesting experimental predictions that have recently
been verified experimentally [2].

In several f-electron materials, a transition between a
phase where f electrons are more localized and another in
which they are more itinerant is also observed (such as the
isostructural �-� phase transition of cerium) [3,4]. In these
materials, however, there is a broad band with spd char-
acter close to the Fermi level (in addition to the f orbitals),
and both phases are metallic. It was suggested early on by
Johansson [5] that the concept of a Mott transition within
the f-electron subspace may still be relevant in this con-
text. A different view is the Kondo volume-collapse (KVC)
model [6,7], in which the transition is driven by the change
in the hybridization between the two phases with different
unit-cell volumes. In this picture, the broad band of con-
duction electrons plays a key role, while it is merely a
spectator in the Mott picture. The interplay of these two
mechanims in cerium have recently received a great deal of
attention [8–11].

In this Letter, we study the localization-delocalization
transition within a simple model, which nevertheless re-
tains the key ingredients present in f-electron materials.
The model interpolates between a Hubbard model for the f
orbital and the periodic Anderson model (PAM) in which
this orbital is hybridized to a broad band. Our goal is to
understand whether, in a purely electronic model, the Mott
transition present when the f band is isolated remains a
robust feature in the presence of a finite hybridization to a
broad band. Our key finding is that the answer to this
question depends on temperature in a crucial manner. At
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zero temperature, the Kondo effect always sets in and
screens the local moment. As a result, in a purely electronic
setting, the Mott transition is suppressed by an arbitrarily
small hybridization. In contrast, a first-order transition
remains at finite temperature.

The similarities between the phase diagram of the PAM
and that of the Hubbard model at finite temperature have
been pointed out previously [12]. However, the distinction
between a first-order transition with coexisting electronic
phases and a mere crossover was not addressed. More
importantly, the T � 0 case was investigated in the case
where the hybridization vanishes at the Fermi level
[13,14]: this is a nongeneric case in which the transition
survives down to T � 0. In the generic case of a finite
hybridization, the connection between the smooth behavior
at T � 0 and the finite-temperature transition has not been
addressed before. Our model study also has direct impli-
cations for the volume-collapse transition of materials such
as Ce0:8La0:1Th0:1 [15] and its dependence on magnetic
field [16].

We study a generalization of the PAM defined by the
Hamiltonian:
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In addition to the usual hybridization and interaction terms,
it contains a direct hopping between the f orbitals: tff �
�t. The model reduces to the PAM when � � 0. When
V � 0, it describes two independent fluids: free conduction
electrons and a narrow band of f electrons described by the
Hubbard model. For simplicity, our study is restricted to
the particle-hole symmetric case (hnfi � hnci � 1). In this
case, one has a (renormalized) hybridization-gap insulator
when the direct f-f hopping is small, as studied in [17] (for
� � 0 and large U this is the Kondo insulator). For � large
enough, however, the gap closes and the model describes a
metal. As shown below, the criterion for a metallic ground
state is essentially independent of U and reads �>
�V=Dc	

2 (with Dc the conduction electron bandwidth).
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In this Letter, we study this metallic regime within
DMFT (which becomes exact in the limit of infinite coor-
dination), focusing on the paramagnetic phase. When V �
0, the situation is well documented [1,2]: the f electrons
are described by a Hubbard model which undergoes a Mott
transition. The transition is first order at finite temperature,
with a transition line Uc�T	 ending at a critical end point
�Uc; Tc	. For U <Uc�T	, the f electrons are itinerant,
while for U >Uc�T	 they behave as local moments.
These two behaviors correspond to two locally stable
mean-field solutions, which coexist in the domain
Uc1�T	<U <Uc2�T	 delimited by two spinodal lines.
The transition persists down to T � 0: there, the quasipar-
ticle weight of the correlated itinerant solution vanishes
continuously at Uc2�T � 0	. The main issue we want to
address is whether a regime with unscreened local mo-
ments survives in the presence of a finite hybridization
(V � 0) to the broad conduction electron band, and what
happens to the phase transition.

DMFT associates with this lattice model a single-
impurity Anderson model for the f orbital, subject to an
effective self-consistently determined hybridization func-
tion �eff�i!n	. For the case of semicircular densities of
states for both the c and f electrons, the cavity construction
[1] yields the self-consistency condition:

�eff�i!n	 � �2t2Gff�i!n	 �
�V � �t2Gcf�i!n	�

2

i!n � t2Gcc�i!n	
: (2)

In this expression, Gff, Gcf, and Gcc are the different
components of the on-site interacting Green’s function,
which must be computed self-consistently from the effec-
tive impurity model. This expression has a transparent
interpretation: the screening of the f moment on a given
site in the local picture of the lattice model has two origins
reflected in each term of this equation. The first term
describes the screening due to the motion of the f electrons
onto other sites: it is effective only when the f electrons are
itinerant, and its vanishing at low energy is associated with
the Mott phenomenon. The second term describes the local
screening due to the conduction electrons. This screening
is affected by the f-electron motion, resulting in a reduced
frequency-dependent effective hybridization Veff�i!n	 �

V � �t2Gcf�i!n	.
Let us consider first the case T � 0. Physical intuition

suggests that an arbitrarily small hybridization V is enough
to screen the local moment through the formation of a
Kondo singlet with the conduction electrons. The energy
scale associated with screening will be very small, but
finite, at small V. Hence, at T � 0, the hybridization is a
singular perturbation when starting from the paramagnetic
Mott phase, suggesting that the T � 0 Mott transition is
unstable against the introduction of hybridization. This
intuition is supported by a low-frequency analysis of
Eq. (2). In a Mott phase with unquenched f moments,
the Green’s function and self-energy behave as 
f�i!	 
1=i!, Gff�i!	  i! at small !. Inserting this into (2), one
06640
sees that �eff�i!	  i! as !! 0 if V � 0, which is con-
sistent with the original assumption of a local moment as it
implies a gap in the hybridization density of states
Im�eff�!� i0�	. However, as soon as V � 0, �eff�i!	
tends to a finite (imaginary) value as !! 0 because of
the second term in (2). This implies a finite value of
Im�eff�!� i0�	 at low frequency, inconsistent with a
free local moment. Hence, at T � 0 and when V � 0, the
self-energy has a local Fermi-liquid form 
f�i!	 
i!�1� 1=Z	 � � � � for all values of U, with Z the
f-quasiparticle weight. At large U, Z is very small and
sets the scale for screening. This yields two quasiparticle
bands, which read (neglecting lifetime effects) 2!�

k �

�1� �Z	�k � ��1� �Z	2�2k � 4ZV2�1=2. This corre-
sponds to the noninteracting band structure, with renor-
malized parameters: �eff � Z�, Veff �

����

Z
p

V. A
hybridization gap is present only if Veff >

��������

�eff
p

Dc. The
quasiparticle weight Z drops out from this criterion: hence,
the two quasiparticle bands overlap and one has a metal
when V <

����

�
p

Dc, independently ofU as announced above.
Accordingly, it follows from this low-frequency analysis
that, at T � 0, the f-spectral function is pinned at! � 0 to
its noninteracting value: Aff�0	 � ��1�0�V=

����

�
p

	, for all
U, as long as 0< V �

����

�
p

Dc (with �0 the noninteracting
density of states of the conduction band). In this Fermi-
liquid state, the ‘‘large’’ Fermi surface encounters nc �
nf � 2 electrons per site. This analysis can be illustrated
by a simple calculation using the Gutzwiller approxima-
tion (GA). In this approach, one optimizes a variational
energy depending on the probability of double occupancy
d, and the quasiparticle residue is obtained [18] as
Z � 16d�1=2� d	. The results of this approximation for
our model are displayed in Fig. 1. This figure shows that
the Brinkman-Rice transition (analogous to the Uc2 found
in DMFT), at which Z vanishes in the Hubbard model
(V � 0), is no longer present at finite V. This can also be
proven by generalizing to tff � 0 the method of Ref. [13],
which maps the PAM onto a Hubbard model with
Lorentzian density of states (for which Uc2 � 1). Within
the GA, we showed analytically that, because V introduces
a logarithmic singularity ( / Z lnZ) in the variational en-
ergy at small Z, the minimum is always found at a finite
value of Z. This also allows us to estimate the behavior
of Z at large U � Uc2, which has the expected exponen-
tial suppression characteristic of the Kondo effect: Z

c�;Ve
��UDc=32V2

(the prefactor c�;V depends only weakly
on � and V).

In order to confirm and extend this analysis, we per-
formed a full quantitative solution of the DMFT equations
at T � 0, using an exact diagonalization (ED) scheme
based on the Lanczos algorithm and an adaptative discre-
tization of the effective bath degrees of freedom [1]. In
what follows all energies are expressed in units of the half-
bandwidth Df of the narrow band, and � � Df=Dc � 0:1.
The Green’s function and self-energy obtained from ED
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FIG. 2 (color online). Phase diagram within the IPT approxi-
mation. Regions where localized and itinerant solutions coexist
are displayed for (from bottom to top) V=Df � 0:1; 0:2; 0:3.
Only finite-temperature transitions exist when V � 0, resulting
in two critical end points. In contrast, the spinodals of the V � 0
case (dashed lines) reach T � 0 at finite critical values of U.
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FIG. 3. Left panel: comparison between spectral densities for
V � 0 (full lines) and V � 0 (Hubbard model, dashed lines), in
the screened phase (a) and in the unscreened one (b), in DSR.
(c) Upper and lower Tc of the critical end points as functions of
V within IPT (full lines). Upper Tc with DSR (dashed line).
(d) Transition temperature as a function of an applied magnetic
field H for U=Df � 2:7, calculated at T � 0 within ED. All
energies are in units of Df.
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FIG. 1 (color online). Comparison of Z vs U for different
values of V (from the left: V=Df � 0:1; 0:2; 0:3; 0:4) obtained
using the GA and T � 0 ED (inset). Both methods clearly show
that Z never vanishes as soon as V � 0, in contrast to the V � 0
(Hubbard model) case, which displays a transition at the critical
value of U indicated by the arrows. Note that the GA over-
estimates Z.
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(not shown) do obey G�i!	  �i���1�0�V=
����

�
p

	,

�i!	  i!�1� 1=Z	 at low-frequency for all V � 0,
from which we obtained the quasiparticle weight displayed
in Fig. 1. We also performed ED calculations for increasing
and decreasing sweeps in U in order to check that no other
solution of the DMFT equation is present at T � 0 when
V � 0, besides the Fermi-liquid one with screened f mo-
ments and a large Fermi surface. This is in contrast to the
Hubbard model (V � 0), which has a coexistence region
�Uc1; Uc2� between a Mott-localized and an itinerant solu-
tion extending down to T � 0.

While Kondo screening always sets in at T � 0 and
suppresses the Mott transition, at T > 0 the effect of a
perturbation (even if singular for the ground state) is, on
general grounds, expected to be smooth. As a result, the
first-order transition and the coexistence region should be
robust features of the present model as long as V is not too
large. Since small energy scales are involved (Tc Dc=40
for the pure Hubbard model, and the Kondo screening scale
is tiny at large U), an exact numerical study is difficult and
we approached the problem using two approximate impu-
rity solvers. The first is the iterated perturbation theory
(IPT) approximation [19], which has proven to be semi-
quantitatively very successful in the study of the Mott
transition. IPT is known to overestimate low-energy scales,
and will not be accurate in the Kondo regime. The second
method is the (dynamical) ‘‘slave-rotor’’ (DSR) integral
equations [20], which is able to resolve low-energy scales
and reproduces the correct exponential Kondo scale at
large U. The phase diagram found within IPT is displayed
in Fig. 2.

As anticipated, the coexistence (hysteretic) region is still
present for the smaller values of V. As V increases, its
extension is drastically reduced, and Tc decreases, as also
found with the more accurate DSR solver (Fig. 3 compares
the estimates of Tc in the two methods). The spectral
06640
functions of two coexisting solutions are displayed in
Fig. 3: one has a well-formed Kondo peak corresponding
to good screening of the local moment, while the other one
has very small (but finite) spectral weight at low energy. In
contrast to the V � 0 case, we find that the two spinodals
no longer extend down to T � 0 and that, within IPT,
another critical end point is found at low temperature at
which the actual first-order transition line terminates. Note
that, in view of the above analysis at T � 0, the two
spinodal lines must, indeed, either end at a lower critical
point or run away towards infinite coupling. Unfortunately,
because of the low-energy scale involved, we have not
been able to push the DSR method to low enough tempera-
2-3
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tures and firmly establish the existence of a lower critical
end point within this technique.

We have also studied the effect of a magnetic field on the
transition between the screened (low-T, itinerant) and
unscreened (high-T, local-moment) regimes. This is moti-
vated by recent experiments on the �-� transition of the
Ce0:8La0:1Th0:1 alloy, showing that the transition tempera-
ture is decreased by an applied magnetic field [16]. Dzero
et al. [21] pointed out that this can be rationalized by
approximating the high-T � phase as a collection of almost
free localized magnetic moments, while assuming that the
free energy of the low-T � phase does not change appreci-
ably with magnetic field. In Fig. 3(d), we display our
findings for the temperature associated with the local-
moment spinodal line (lower boundary of the coexistence
region), as a function of applied field. This demonstrates,
within the simple microscopic model studied here, that
indeed the transition is suppressed by a magnetic field as
observed experimentally.

To summarize, we have studied a model that retains the
key aspects of f-electron metals, i.e., a narrow correlated
band hybridized with a wide uncorrelated conduction band.
We found a first-order transition at finite temperature be-
tween a screened phase and a local-moment phase, ending
in two critical end points. At zero temperature, the hybrid-
ization is a relevant perturbation, so that the Mott transition
is suppressed by Kondo screening. This is qualitatively
consistent with the KVC picture. These findings can be
put in the broader context of the orbital-selective Mott
transition (OSMT), which attracted a lot of attention re-
cently [22–24]. In a general two-band case, the self-energy

̂ takes a matrix form and the Mott transition is signaled,
when approached from the metallic side, by a low-
frequency singularity in !:Î � 
̂�!	 � Ẑ�1!� � � � . An
OSMT is characterized by Ẑ having one zero eigenvalue,
while the other one remains finite. We emphasize that this
is a basis-independent notion. In our model, Ẑ is diagonal,
with Zcc � 1, and hence an OSMT phase corresponds
simply to the vanishing of Zff. At T � 0, this does occur
for zero hybridization, but Kondo screening sets in as soon
as a finite hybridization is turned on, preventing Zff from
vanishing.

Finally, we comment on the qualitative relevance of our
results for f-electron materials. There, the contribution
(Fe) to the free energy from the electronic degrees of
freedom that are active close to the transition have to be
added to the contributions from all other bands and ions,
which can be approximated by an elastic contribution (see,
e.g., [7]). As a result, the volume-collapse transition does
not correspond to a true divergence of the response func-
tion !e � �d2Fe=dv

2 of the active electronic degrees of
freedom (with v the unit-cell volume). Rather, it will take
place [25] when !e � B0=v0, with B0 and v0 a typical bulk
modulus and unit-cell volume. Hence the critical tempera-
tures of the upper and lower end points are shifted upwards
and downwards, respectively, by elastic terms. We there-
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fore conclude that there are two generic situations that are
consistent with our results: either the material displays a
first-order transition down to T � 0 (for softer materials,
with smaller values of B0) or it will display two critical end
points (for harder materials) (see also [6]). Experimental
studies [15] suggest that the latter case may be realized in
Ce0:8La0:1Th0:1, in which alloying acts as a ‘‘negative
pressure,’’ thus allowing for an investigation of the
localization-delocalization transition at lower temperatures
than in pure cerium. Our results also imply that a T � 0
quantum-critical valence transition is a nongeneric case
that requires the tuning of an extra parameter.
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