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A non-Markovian partial differential equation, rooted in the theory of Brownian motion, is proposed for
describing heat conduction by phonons. Although a finite speed of propagation is a built-in feature of the
equation, it does not give rise to an inauthentic wave front that results from the application of Cattaneo’s
equation. Even a simplified, analytically tractable version of the equation yields results close to those
found by solving, through more elaborate means, the equation of phonon radiative transfer.
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Thermal conduction has been treated, until quite re-
cently, within the framework of the classical parabolic
heat equation, associated with the name of Fourier, or by
using the hyperbolic heat equation, frequently named after
Cattaneo [1]. The failure of Fourier’s equation, which
becomes apparent when one examines heat conduction
on small scales [2-5], is easily grasped, for it implies an
infinite speed of heat propagation; more disappointing,
however, is the failure, under similar circumstances, of
Cattaneo’s equation, since it does assign a finite value to
the speed of propagation. Recognition of the inadequacies
of these equations prompted Majumdar [2] to introduce an
equation that has come to be known as the equation of
phonon radiative transfer (EPRT); it models conduction of
heat in thin dielectric films as the transport of phonons, in
analogy with the linear Boltzmann equation (LBE) used
for describing the transport of photons and monoenergetic
neutrons [6]. Since even simple versions of EPRT are time
consuming [3], one is tempted to replace it with an easier
alternative that is more trustworthy than the equations of
Fourier and Cattaneo. Recently, Chen has proposed a
promising approach, to be labeled here as the ballistic-
diffusive approximation (BDA), where Cattaneo’s equa-
tion is grafted onto the collisionless form of EPRT [4,5].
An unsatisfactory feature of BDA, traceable to Chen’s
employment of Cattaneo’s equation, is the occurrence of
an artificial wave front in the diffusive component of the
internal energy. Another manifestation of the distortion
introduced by Cattaneo’s equation is a small but significant
disagreement between the temperature profiles predicted
by EPRT and BDA.

In this Letter, we propose a new heat equation (NHE) for
describing phonon-mediated heat conduction, and present
results obtained by employing an analytically tractable
version of the equation. Since we wish to compare our
results with those reported by other workers [3—5], we will
treat a plane-parallel conducting medium. We will denote
the average speed of sound by v and the mean-free path of
phonons by €; the symbol 7= €/v will be called the
mean-free time.

The general form of NHE will be presented after we
have examined an exactly soluble special case that can be

0031-9007/05/95(6)/065901(4)$23.00

065901-1

PACS numbers: 66.70.+f, 02.70.Uu, 05.40.—a, 05.60.Cd

written as
0,T(x, 1) =1 — e /"kd  T(x, 1), (1)

where 9, = 9/dy and 9,, = 9,0,; T(x, 1) denotes the tem-
perature at time ¢ at the point x, and k = v€/3 is thermal
diffusivity. One sees immediately that Eq. (1) reduces to
Fourier’s equation, 9,7 = kd,, T, in the long-time limit
(e”"/™ <« 1); furthermore, the substitution s = ¢t — 7(1 —
e~ '/7) reduces Eq. (1) to 9,7 = kd,,T.

To begin with the statement of the problem: A slab of
thickness L is initially at a uniform temperature 7\; at time
t = 0, one face (say, that at x = 0) is raised to a tempera-
ture 7'} and is maintained at this temperature thereafter, the
other face (at x = L) being kept at the temperature T\); we
wish to find the temperature T'(x, t) and the flux g(x, 1), for
t>0and 0 = x = L. Since the problem has already been
treated in the past [3—5], we will not give more details
other than spelling out our notation: AT =T, — T, £ =
x/L, tt=t/r, s*=s/1, 0= T —T,)/AT, ¢ =
q/(CvAT), Kn = {/L; Kn is the Knudsen number and C
stands for the specific heat per unit volume.

It will be convenient to append to 8 and ¢ an appropriate
suffix (P, H, or N, depending on whether the result pertains
to the parabolic, hyperbolic, or new heat equation). The
equations used for calculating 6p(&, %), Oy(& 1),
dp(& 1), and Py (&, 1) have been stated (with some mis-
prints) by previous authors [3,5]. The transformation s =
t—7(1 — e "/7) enables us to express Oy(& 1) and
by (& 1) as follows:

aN(f’ tv) = HP(S: S*)! (2)
Pn(€ 1) = (1= e ")pp(é ). 3)

Figure 1 compares the performance of NHE with the
other equations mentioned above; here the nondimensional
temperature (&, t*) and the nondimensional heat flux
@(&, 1) are plotted against & at #* = 1 in a slab for which
Kn = 1. It is to be noted that Chen [4,5] has rescaled his
data so as to harmonize the definitions pertaining to the
different equations; in the absence of such rescaling the
EPRT plots show jumps at the boundaries (see below). One
sees that the temperature profile predicted by NHE is in
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FIG. 1 (color online). Comparison of the spatial profiles of
0(&, ) and @ (&, r*) calculated by using the equation of phonon
radiative transfer (EPRT), Chen’s ballistic diffusive approxima-
tion (BDA), the parabolic heat equation of Fourier (PHE), the
hyperbolic heat equation of Cattaneo (HHE), and Eq. (1), the
new heat equation (NHE). The data for the curves labeled EPRT
and BDA have been taken from Refs. [4,5].

excellent agreement with the rescaled EPRT plots; the flux
predicted by NHE deviates visibly from the EPRT plot (for
& > 0.7), but the other two plots (the parabolic heat equa-
tion of Fourier and the hyperbolic heat equation of
Cattaneo) are in severe disagreement with the EPRT plot
for nearly all values of £.

Curves showing the surface heat flux ¢ (0, ¢) are plotted
in Fig. 2, and compared with reconstructions of Chen’s
plots. The top panel refers to a slab that is so thin that
transport becomes essentially ballistic; this issue needs
closer attention than can be paid here, but physical consid-
erations lead us to expect that Eq. (4), given below, will
perform better than Eq. (1). The middle and bottom panels
of Fig. 2 reveal a persistent discrepancy between NHE and
EPRT; this is to be expected since the EPRT data originate
from plots which have not been rescaled.

Let us pause briefly to note that Eq. (1) provides, in all
cases, a better description than that furnished by Cattaneo’s
equation. This means that the performance of BDA can be
improved by discarding the Cattaneo equation in favor of
Eq. (1). We return now to Eq. (1) and investigate the
prospects of using it as a complete equation in itself; for
this purpose, we will not consider samples where transport
is dominated by ballistic behavior.

One would expect, in view of some previous inves-
tigations [2,3,7], temperature jumps to occur at the bounda-
ries of sufficiently thin samples. To cope with tempera-
ture jumps, we must replace the boundary conditions
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FIG. 2 (color online). Comparison of the temporal profile of
the heat flux at £ = 0 calculated by using EPRT, PHE, HHE, and
NHE; the BDA data (not shown) are almost superposable on
EPRT curves; for an explanation of the labels, refer to Fig. 1. The
EPRT data have been read from Refs. [4,5].

00, ) =1 and 6(1,¢) =0 with 8(—&, ) =1 and
O(1 + &, 1) = 0, respectively. Postponing the issue of
how the values of the extrapolated end points (xy = L&,
and x; = L&) are to be found, we will estimate their
values by using the results published by Chen [5]; it is
pertinent to recall that, in the steady state, the diffusive part
of his solution satisfies Marshak’s boundary condition [6]:
xo = x; = 2€/3, or equivalently &, = &; = 2Kn/3.

Let us consider now a slab for which Kn = 0.1 and focus
attention on the temperature profiles at the instants * = 1,
10, and 100. An examination of Chen’s EPRT plot for * =
100, which is almost linear, shows that &, and £, are, as
one would expect from the above remark concerning the
boundary conditions, close to 0.07 [5]. By choosing &, =
0.07 = £, we were led to plots that agreed well, for t* =
10 and ¢* = 100, with the EPRT counterparts in Chen’s
work; but for r* = 1, a sufficiently close fit to the EPRT
values could not be obtained without changing &, to 0.03.
For substantiating these statements, we draw the reader’s
attention to the upper panel of Fig. 3, where our plots are
compared with Chen’s BDA curve (¢t = 100) or with his
EPRT plots (* = 1 and 10). To avoid clutter, we have not
displayed the BDA values for ¢ > 0.4, and we have also
chosen not to reproduce Chen’s EPRT plot (for #* = 100),
which is close to the NHE plot for all values of ¢ and to

065901-2



PRL 95, 065901 (2005)

PHYSICAL REVIEW LETTERS

week ending
5 AUGUST 2005

& T T T T T T T T
2 A Kn=1/10
< 08 ... T
5 3 * —NHE
£ . ML 100 —  NHE
o \ NHE
O 5 \\ [*:10 ........ BDA
S o4 ll \ O EPRTH
o = \
17} ]
& LD
= \ -
o urt=1 S~
3 00—ty R B
S X ]
Kn=1/10 |

« J
3 02 H = = -*=100
- F —o—t*=10 7
EY t*=1
)
] [ J
z 01 T
&
g %o, 4
a
4
5 FA--- e m—mmmmmm— e —
4 [ 00,

0.0 I f | 22000k 00amnnnal

0.0 0.2 04 0.6 0.8 1.0
NONDIMENSIONAL COORDINATE

FIG. 3 (color online). Profiles of 6(¢, ") (upper panel) and
¢ (&, t*) (lower panel) as predicted by NHE. The open squares
represent the prediction of EPRT (for * = 1 and 10) reported in
Ref. [5]. The dotted curve, derived from a plot in Ref. [5], is the
output (for t* = 100) of BDA.

BDA for £ > 0.2. We would like to add here that it did not
seem worthwhile to improve the fit by fine-tuning the
inputs for the extrapolated end points. Finally, we show,
in the lower panel of Fig. 3, our plots for ¢ (¢, 1) for three
particular instants (¢* = 1, 10, and 100), using the same
values of &; as those mentioned above (0.03, 0.07, and
0.07, respectively). The plots for r* = 10 and * = 100 are
in notable agreement with Chen’s EPRT plots; the shape of
the flux plot at r* = 1 accords with its EPRT counterpart,
but its initial amplitude is larger. We believe that this is
due, at least in part, to inappropriate choices for the ex-
trapolated end points.

The foregoing evidence leads us to conclude that Eq. (1)
affords an exceptionally simple, stand-alone strategy for
studying transient heat conduction in a system where pre-
cise values of the extrapolated end points are not needed.
On the basis of the results presented in Fig. 3 and some
arguments given later, we suggest that this requirement
will be met when Kn < 1/10 and 7* = 10.

Having illustrated the performance of an analytically
tractable form of NHE, we now state its general form,

9, T(x, 1) = %a(l)axxT(x, 1) — b(1)o,T(x, 1), 4)

and hasten to add that the equation is new only in the
context of heat conduction; if T(x,t) is replaced by
F(x, 1), the probability density of a particle in coordinate
space, Eq. (4) becomes identical with an equation of
Ornstein and van Wijk [8]. The physical significance of
a(r) and b(r) is easily grasped by considering an infinite
space system and subjecting Eq. (4) to a Fourier trans-
formation, which yields a,7(k, 1) = —1k2a()T(k 1) —

tkb(0)T(k, 1), where T(k, 1) = [%o dxexp(—tkx)T(x, t).
With m(r) = [{b(t))dt; and o?(t) = [} a(r)dt;, one
gets T'(k, 1) = exp[—{ckm(r) + %kzo'z(t)}]f’(k, 0); the fun-
damental solution to Eq. (4), corresponding to the initial
condition T'(x, 0) = 8(x — x;), is a Gaussian with a mean
m(t) and a variance o>(f). Physically, m is the distance
covered in time ¢ with a mean velocity b, and o is the
corresponding dispersion; at long times, b vanishes and a
attains a constant value; the time-dependence of a and b
chronicles the ballistic phase of the motion. A phase-space
description (involving both position x and velocity x) of a
Markovian process becomes, when projected on x space,
non-Markovian, and initial data enter the reduced equation
itself in the form of time-dependent coefficients [8,9]; at
sufficiently long times, even the reduced description takes
a Markovian appearance, which accounts for the success
(and the limitation) of Fourier’s equation. Since Eq. (4)
holds only for a Gaussian process with white noise [8,9], it
can merely approximate EPRT (see below).

A great merit of Majumdar’s contribution [2] is that it
provides a concrete basis for pursuing the analogy between
phonon-mediated heat conduction and particle diffusion in
terms of the relevant equations. In the original formulation
of EPRT, the speed of phonons is taken to be a constant, but
the mean-free time is viewed as an w-dependent quantity,
where w (0 = w = wp) denotes the frequency. However,
in the simplified version used in Refs. [3—5] and under
scrutiny here, the @ dependence of the mean-free time is
ignored. With a constant mean-free time (denoted here by
7), EPRT can be converted, through integration over w,
into an equation for g(x, u, 1) = [¢”[1,,(x, u, 1)/ v]dw that
has the same form as LBE with isotropic scattering, which
may be written as [9, + vud Jy(x, u, 1) = a3 P — 1) X
(x, w, 1), where P = [, du. This implies that the inter-
nal energy U(x, t) = Pg(x, u, t) and the heat flux g(x, ) =
vPug(x, u, t) are the analogs of F(x, 1) = Pi(x, w, t) and
J(x, 1) = vPui(x, u, 1), respectively. To accommodate
the concept of temperature, we recall Chen’s definition
[51, T(x,t) = U(x, t)/C, and stress that a different defini-
tion would invalidate the rest of the argument.

Let X" = [Pdx [y dux"i(x, w, 1; x;, p;), where x;
and u; denote the initial values of x and w, respectively;
we will assume, without sacrificing generality, that all
particles start with the same value of x;, since a subsequent
integration over the distribution of x; can always be per-
formed, and the variance of x is independent of x;. With
X = x — x*, we define the nth central moment of x as

X" One can use LBE to calculate the central moments

[10], and it turns out that X3 £ 0and X # 3[F#1]2.
Using the suffixes RT and BM to denote radiative transport
and Brownian motion, respectively, the situation can be
summed up as follows: Xt does not have a Gaussian
distribution but Xgy; does. Thus, Eq. (4) cannot provide
an exact description of radiative transfer. The simplified
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treatment advocated here is achieved by insisting that Xgr
is Gaussian; once this concession is made, phonon radia-
tive transfer can be treated as a boundary value problem

within the framework of Eq. (4), with m = X*i and o2 =

x>, A Gaussian approximation for photons was recently
proposed [11], but it was not related to Eq. (4).

We return now to Eq. (4) and point out that the ex-
pressions for a(7) and b(7) depend on how phonons are
injected at the surface x = 0 [10]. If w; = 1 (initial veloc-
ity parallel to the x axis), one gets b(1) = ve " and a(f) =
k[2 — 8E + 4Et* + 6F?)], with E = e~". A second spe-
cial case, which leads to Eq. (1), is that of an isotropic
distribution of w;; for this situation, b(f) = 0 and a(r) =
2k(1 — e~ ""). We chose to work with Eq. (1) mainly be-
cause of the resulting reduction in labor, but in part because
we wish to present it as a substitute for Cattaneo’s equa-
tion, which is discussed below.

When integrated over all w, LBE leads to the con-
tinuity equation, d,F + d4,J =0; when multiplied
by vu and integrated over all wu, LBE gives 79,/ +
J=—v*70,Pu’p(x, u, ). If one assumes that
Pul(x, pu, 1) = %F (x,1), the second relation becomes
19, J +J = —(v*7/3)d,F and yields, if combined with
the first, [79, + 0,]F = (v*7/3)d,.F, a relation named
the telegrapher equation or Cattaneo’s equation (depending
on the context). Cattaneo’s equation and Eq. (1) are ap-
proximations to EPRT, but Eq. (1) is far superior, as shown
above, because it has no second-order time derivative.
Even if the phonons are incident normally at the surface
x = 0, their velocity distribution will randomize after a few
mean-free times, and Eq. (1) will begin to furnish an
adequate account of phonon transport, hence the aforemen-
tioned restrictions concerning its use.

We will now make a brief allusion to the Milne problem,
which is exactly soluble for three linear transport equations
[12]: the Klein-Kramers equation, the single-relaxation
time approximation to the Boltzmann equation, and LBE.
The problem itself may be stated as follows [12]: A homo-
geneous, semi-infinite, nonabsorbing medium occupies the
half-space x > 0, and sustains a constant current of par-
ticles in the negative x direction, the region x <0 is
vacuum, and no particles hit the surface x = 0 in the
positive x direction; the problem is to determine the parti-
cle density in the region x > 0. Though each equation
describes a different physical system, the respective plots

of F(x, t) against x have the same overall appearance;
indeed, within the lowest-order diffusion approximation,
all three imply a rectilinear plot with the same extrapolated
end point; higher-order approximations, or the exact solu-
tions, do reveal residual differences. Given this back-
ground, one expects the temperature profile predicted by
Eq. (4) to be close, but not identical, to that found by using
EPRT. We would like to mention here the possibility, to be
explored in the future, of introducing some corrections to
Eq. (4) by using the higher central moments [10] or by
making ad hoc changes in the expressions for a(f) and b(r).

All that remains is to discuss the boundary conditions to
be imposed on the solutions of Egs. (1) and (4). Since there
is some disagreement about this matter in the field of heat
conduction [5], we will content ourselves by drawing
attention to a few relevant contributions concerning
Milne’s problem [13—15]; particularly relevant in this con-
text is the finding that the extrapolated end point is a time-
dependent quantity.
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