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Nonlinear Saturation of Tearing Mode Islands
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New, rigorous results for the tearing island saturation problem are presented. These results are valid for
the realistic case where the magnetic island structure is nonsymmetric about the reconnection surface and
the electron temperature, on which the electrical resistivity depends, is evolved self-consistently with the
island growth.
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Magnetic reconnection is a ubiquitous phenomenon in
magnetically confined plasmas, both in space and in labo-
ratory experiments. This process causes a topological tran-
sition of the magnetic field configuration, accompanied by
a transformation of magnetic energy into plasma kinetic
energy and heat in a relatively short time. In magnetic
fusion experiments, reconnection often occurs spontane-
ously and this classical instability is well known as tearing
modes [1]. In tokamak devices, these modes are often
responsible for degraded plasma confinement and are
seen as a potential threat for the successful operation of
burning plasma experiments.

There is a large body of literature on the theory of
resistive tearing modes (see, e.g., Ref. [2]). Linear stability
investigations were carried out initially in slab geometry
[1], and later extended to cylindrical [3] and to full toroidal
geometry [4]. Analytic investigations of the nonlinear
phase of tearing modes have been fewer. Rutherford [5]
developed a theory of the nonlinear evolution and showed
that the exponential growth of linear theory is replaced by a
growth phase in which the width, W, of the reconnected
island is governed by the simple equation dW=d�� �

1:22�0, where W � 4� 0=L
2 00

eq��0��
1=2 is the dimension-

less island width,  eq��0� is the equilibrium helical mag-
netic flux function at the reconnecting surface,  0 is
the value of the perturbed helical magnetic flux at the
island X-point, L is a convenient normalization scale,
�� � �t=L2 is time on the resistive diffusion scale, �0 �

lim
!0�L= 0��d out=dx�j

�
 is the linear stability index
[1], and  out is the outer perturbed flux.

The first analytic study of the nonlinear saturation
of tearing modes in the low-� (� kinetic pressure=
magnetic pressure) approximation was presented by
White et al. [6]. In this pioneering work, a quasilinear
treatment was adopted, such that only the dominant
Fourier component of the linear mode structure was as-
sumed to play a role in the nonlinear saturation process. An
ansatz for the nonlinear island structure was assumed. As a
consequence, the analytic results obtained in [6] are ap-
proximate and indeed Biskamp noted a disagreement with
numerical results [2]. In Ref. [7], Thyagaraja established a
systematic expansion procedure, assuming ln�1=W� � 1,
05=95(6)=065001(4)$23.00 06500
so that terms of order O�W� were neglected relative to
terms O�W ln�1=W��. A rigorous result was also obtained
in Refs. [8,9] for slab geometry models where the equilib-
rium current density, Jeq, is symmetric about the reconnect-
ing surface. Further results relevant to the present
discussion were obtained in [10,11]. But approximations
for the island structure were still adopted in these papers,
and as a consequence only part of the answer was obtained
[see the discussion below Eq. (8)]. In addition, all the
foregoing work dealt with situations where the electrical
resistivity was assumed to be unaffected by the island
formation.

In this Letter, we are interested in the realistic case
where the equilibrium current density is not symmetric
about the reconnecting surface, and the dependence of
the resistivity profile on the plasma temperature, T, is
accounted for. For simplicity, we adopt the classical
(Spitzer) expression for resistivity in a fully ionized
plasma, � / T�3=2 and neglect complications such as the
dependence of � on the effective charge in an impure
tokamak plasma. In a practical tokamak equilibrium con-
figuration,�eqJeq is balanced by a constant toroidal electric
field, E. Therefore, since Jeq has a nonconstant radial
profile, so does �. As the saturated magnetic island ex-
ceeds a critical width,Wc � ��?=�k�

1=4, determined by the
ratio of perpendicular over parallel thermal conductivity
[12], the temperature profile must relax; in particular, it
should become nearly constant within the island region on
account of the very large thermal conductivity along the
magnetic field lines. Therefore, as already pointed out by
Rutherford [5], the treatment of the island saturation prob-
lem requires an equation for the plasma temperature
evolution.

Our mathematical discussion is organized as follows.
We provide a somewhat detailed derivation of the island
saturation problem in slab geometry. The case of small
magnetic islands,W � Wc, is treated first. In this case, the
equilibrium resistivity profile is not modified by the change
in magnetic topology and we obtain an island saturation
equation, which extends and corrects the results reviewed
above. Then, we consider the case W � Wc. Finally, re-
sults in the cylindrical case are summarized (our proce-
1-1  2005 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.95.065001


PRL 95, 065001 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
5 AUGUST 2005
dure applies to modes with poloidal mode number
m> 1).

In slab geometry, we assume a magnetic field configu-
ration of the type B � B0ez 
r�� ez, where B0 �
const and ��x; �� �  eq�x� 
  �x; ��, with � �

kyy
 kzz. In order to mimic toroidal geometry, y and z
are assumed to be periodic coordinates, so that the wave
vector components ky and kz acquire discrete values. It is
convenient to write B � BC 
B�, where k �BC � 0
everywhere and B� � r�� � ez is the sheared magnetic
field, which is the part of B involved in the reconnection
process; �� � �� kzB0x=ky has the meaning of helical
flux. Magnetic flux surfaces correspond to �� � const. In
slab geometry, the helical current density, J� � �r2

?��,
coincides with the current density along the z direction, J,
where the operator r2

? � @2x 
 @2y. The resonant recon-
necting surface is located at x � 0, where d �eq=dx van-
ishes. The problem is assumed to be two-dimensional, with
the coordinate orthogonal to x and � as the ignorable
coordinate. The nonlinear problem involves a single helic-
ity, kz=ky; however, several harmonics in � are required in
order to account for the nonsymmetric structure of the
magnetic island. The plasma flow is v � vzez 
 ez �
r�, with � the stream function. Following a standard
procedure [5], the resistive MHD model can be reduced
to two equations for �� and �. The first equation is the
plasma vorticity equation:

@tU
 ��;U� � �J;���; (1)

where U � r2
?� is the vorticity component along the z

direction, �A;B� � ez � rA�rB, and a constant density
has been assumed. The second equation is the z component
of the resistive Ohm law:

@t�� 
 ��;��� � E� ��T�J: (2)

For the small island case, W � Wc, the temperature
profile is not modified by the presence of the island, so
we can take T � Teq / J

2=3
eq and ��T� � �eq�x� in Eq. (2).

At saturation, the @t terms vanish. Inspection of Eq. (2)
reveals that � is O��� as compared to ��, hence the
inertial term ��;U� can be neglected in Eq. (1), which
then yields J � J���� to lowest order in �. The term
��;��� in Eq. (2) is annihilated by flux surface averaging,
yielding

E � h��Teq�Ji; (3)

where hfi � �
R
j @�@X j

�1fd��=�
R
j @�@X j

�1d�� denotes the
flux surface average of f. These equations govern the
small island calculation [5,7,12], with � � ����X; �� �
 eq�0��= 0 a conveniently normalized flux variable and
X � x=W.

Following Ref. [7], we employ an expansion of J��� in
powers of W, J��� � J0��� 
WJ1��� 
W2J2��� 

O�W3�. A similar expansion is assumed for ��X; ��.
Using the equilibrium relation �eq � E=Jeq, we find
06500
J��� � hJ�1
eq i

�1. Expanding Jeq�x� � Jeq0, we obtain up
to terms O�W2�:

J���

Jeq0
�1
WahXi
W2

��
b
2
�a2

�
hX2i
a2hXi2

�

: (4)

The difficulty in the nonlinear problem lies in the fact
that the shapes of the modified magnetic surfaces, which
are needed in order to evaluate the flux surface averages,
are not known initially. However, Thyagaraja [7] showed
that the solution for J��� to any given order in the W
expansion, only requires knowledge of the flux surface
shape, i.e., of �, to one order less in the expansion.
Thus, starting from the lowest order, symmetric, expres-
sion [5,12] for �0 � 8X2 � cos�, one finds, J1 � J0ahXi,
which vanishes within the island (�1<�0 < 1) and is
finite outside the separatrix. And, crucially, this expression
for J1 only requires the flux surface average hXi0 calculated
using the symmetric island structure defined by �0�X; ��.
The corrections arising from a more accurate specification
of � � �0 
W�1 areO�W� smaller and are recovered in
next order of the Thyagaraja expansion. A similar proce-
dure has been followed recently by Escande et al. [13].

The Ampere equation then takes the form

@2�1

@X2
�

� a'(
4K�m�

���
m

p ; �0 > 1

0; j�0j< 1
(5)

where ' � X=jXj, K is the elliptic integral of the first kind
and m � 2=��0 
 1�. Equation (5) is used to determine
�1. Then, J2��� is calculated, requiring the evaluation of
hXi to O�W�, taking account of the asymmetric flux sur-
faces defined by � � �0 
W�1. Integrating up Eq. (5)
in the three regions (outside the separatrix, X < 0 and X >
0, and within the island), introduces six arbitrary functions,
Cj���. Continuity of @X� and � at the separatrix reduces
these to two, which are then determined by matching to the
linear eigenmode in the outer region. Surprisingly, this
leaves a part of �1 (inner) which does not match to either
the equilibrium flux in the outer region or the linear per-
turbed flux. The unmatched part of �1 is of odd parity in '
and is constant (�0:37') in the X ! 1 limit. When ex-
pressed in global outer variables it is of magnitude O�W3�,
relative to the equilibrium. It therefore appears that recon-
nection in the inner region is responsible for driving a
nonlinear modification of the outer equilibrium. But since
this is O�W3�, it will have a negligible effect on the
stability index �0 and hence on mode saturation.

The final equation, relating �0 to the island width W, is
obtained by evaluating the jump in the logarithmic deriva-
tive, �@x��=�, across the ‘‘inner region’’ where the mag-
netic topology has changed. Thus, asymptotic matching of
the quantities Min and Mout,

Min �
�16

WJ0�(

Z X

�X
dX0

Z (

�(
d�

�
J


1

16

@2�

@�2

�
cos���;

(6)
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Mout �
L

�out�0�

�
@�out

@x

��������
WX
�
@�out

@x

���������WX

�
; (7)

yields the island saturation equation

�0 � 0:41Wfa2�ln�1=W� 
 4:85� � aA=2� bg; (8)

where a � LJ0eq=Jeq and b � L2J00eq=Jeq, both evaluated at
the reconnecting surface, while A is a measure of the
asymmetry of the global (linear) eigenmode [14]. Note
that the combination ln�1=W� � 0:5A=a does not depend
on the choice of the normalization length, L, and therefore
it is scale invariant. Equation (8) determines the amplitude
of the saturated island in the W � Wc limit. This equation
correctly reduces to the symmetric limit [8,9] where a � 0.

As compared with previous results, we note that: White
et al. [6] had both the ln�W� and the A terms, although
multiplied by different numerical coefficients; Thyagaraja
[7] obtained the correct form of the ln�W� term, but ne-
glected the other terms (as a consequence the result in [7] is
not scale invariant and therefore physically questionable);
Zakharov et al. [10] had only the A term, in addition to a
finite � effect, which we have not taken into account in our
work; Pletzer and Perkins [11] had both the ln�W� and the
A terms with the same numerical factors as in (8), but
missed the other terms.

The large island calculation, W � Wc, follows similar
lines to that of the small island, but since J��� �

J0�T���=T0�
3=2, the electron temperature T��� must be

obtained by integrating up the constraint equation [5,12]

dT
d�

Z
�?�x�jr�jd� � W�?0T

0
0=16; (9)

obtained by expansion of r � qe � 0 in the �?=�k � 1
limit, where qe is the electron heat flux. For the sake of
simplicity, it is assumed that heat sources and sinks can be
neglected locally, while their presence far away from the
island is taken into account by appropriate boundary con-
ditions. The right hand side of Eq. (9) has been chosen to
match the heat flux to its outer region value. With a heat
source for X ! �1 and a constant temperature boundary
condition at X ! 
1, two cases are now considered,
corresponding to different physical conditions. In the first
case, which we report here, the global thermal equilibrium
is unaltered, and steep temperature gradients appear in
boundary layers at the separatrix of the island. Thus, the
inner temperature is matched to the original equilibrium
Teq�x� on both sides of the island. This corresponds to
calculating at an early time on the thermal transport time
scale. In the second case (to be described in a future paper),
the steep electron temperature gradients have relaxed, T is
continuous across the separatrix and the core temperature
has dropped, i.e., degradation of core confinement has
taken effect [15]. In this case the current density in the
core (X < 0) is reduced, the inductive electric field will
have increased to maintain constant plasma current I, thus
increasing current density for X > 0. These perturbations
06500
of the global equilibrium modify the original drive, �0, so
that a more detailed knowledge of the equilibrium is re-
quired to make predictions in this case.

For the large island calculation, the temperature is
expanded in the form, T��� � T0 
WT1��� 

W2T2��� 
 � � � , and is required up to second order. As
in the small island case, the calculation of T1 (and hence
J1) only requires a knowledge of the lowest order flux
function �0�X; ��. Then, the Ampere equation,

@2�1

@X2
�

8<
: a'

�
8���
m

p � 2(
R
m
0

dm0

�m0�3=2

�
1

E�m0�
� 2

(

��
0;

(10)

valid, respectively, outside and inside the separatrix, can be
integrated to determine the asymmetric correction, �1, to
the flux. In Eq. (10), E�m0� is the elliptic integral of the
second kind. Finally, this permits the calculation of T2 and
J2 and evaluation of the quantity Min. Equating this quan-
tity to Mout, Eq. (7), one obtains

�0 � �0:8a2 � 0:27b�W; (11)

determining the island amplitude when W � Wc. It is
noteworthy that the parameter A, representing the global
asymmetry of the tearing mode structure, and the ln�W�
term, do not appear in the large island limit. The result (11)
is asymptotically correct in the limit Wc=W ! 0, but if
finite Wc=W effects were retained, terms involving ln�W�
and A, having their origin in a boundary layer at the
separatrix [12], would reappear although multiplied by a
factor of order O�W2

c=W
2� compared with the correspond-

ing terms in Eq. (8).
Finally, we summarize the cylindrical results. There are

two important differences between slab and cylindrical
geometries. First, the helical and z components of the
current density are not the same in cylindrical geometry,
but differ by a constant, J� � J� 2kzB0=m, with m the
poloidal mode number; second, J� � �r2

?�� now in-
volves both first and second order radial derivatives of
�� with respect to r. As a consequence, the parameters a
and b appearing in the small island solution (10) are
changed into a� � LJ0eq=Jeq� � �1� 2=s�a and b� �
L2J00eq=Jeq� � �1� 2=s�b, where s � �r=q��dq=dr� is the
magnetic shear parameter and q � 2(rB0=LB0eq�r� is the
magnetic winding index, evaluated at the reconnecting
radius r=L � rs. Furthermore, extra terms appear in the
island saturation equations, which now read

�0 � 0:41W
�
a2�

�
ln
�
1

W

�

 4:85�

0:68
2� s

�
�
Aa�
2

� b�




� 0:18�a�=rs�W; (12)

�0 � W�0:8a2� � 0:27b� � 0:09�a�=rs��: (13)

Eqs. (8) and (11) in slab geometry, and their equivalents
in cylindrical geometry, Eqs. (12) and (13), determine the
size of the saturated magnetic island, which will develop
when the original 1D equilibrium evolves to a state where
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�0 > 0. They are rigorous asymptotic results in their re-
spective limits of validity: W � Wc � 1, for Eqs. (8) and
(12), andWc � W � 1 for Eqs. (11) and (13). In the small
island cylindrical result, Eq. (12), we note that the parame-
ters A, a�, and b� can take either sign. However the com-
bination 1�0:41f�ln�1=W�
4:85� 0:68

2�s�a
2
��0:5Aa��

b��0:44a�g is strongly positive for a typical current den-
sity profile in a tokamak. Taking the peaked profile, J �
J0�1� r2�2 (with r � 1 the plasma edge) as an example,
and taking, for simplicity, ln�1=W� � 4, we find 10<
1�rs�< 55 for the m=n � 2=1 tearing mode, as the loca-
tion of the resonant surface rs is varied. The higher values
of 1 are attained near the plasma center. For this current
density profile the 2=1 mode is unstable (with conducting
wall boundary conditions) when rs & 0:88, at which point
1� 16.

Figure 1 shows the saturated island widths as a function
of �0 comparing the small and large island solutions. The
solution by Pletzer and Perkins [11] is also shown
(Thyagaraja’s solution [7] gives a similar curve but its
shape depends on the chosen value of the normalization
length, L). Note that the dashed curve indicates the exis-
tence of a tangent bifurcation with W < 1 (see also
Ref. [7]) while in our results the tangent bifurcation has
disappeared. An interesting conclusion is that, when the
small and large island limits are interpolated and included
in the time-dependent Rutherford equation, the island
width increases considerably as W exceeds Wc, of which
a realistic value is indicated in the figure.

In terms of practical relevance of the present analysis
and its applicability to realistic tokamak plasmas, the main
limitations are the neglect of diamagnetic, ion Larmor ra-
dius (3i) and three-dimensional effects. Diamagnetic and
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FIG. 1. Saturated island width as a function of �0. Comparison
between Pletzer et al. small [Eq. (12)] and large [Eq. (13)] island
results for a typical bell shaped equilibrium current density
profile.
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Larmor radius effects are known to be important when the
island width is relatively small, i.e., w & 3i. Three-
dimensional effects are important for relatively large is-
lands, i.e., when islands with different helicities initially
localized around different resonance surfaces tend to over-
lap. On the other hand, the rigorous theoretical framework
emerging from this Letter is a possible starting point for
further generalizations to more complex physical situation.
As far as neoclassical effects are concerned, the new terms
in Eq. (12) will compete with the neoclassical bootstrap
term [12,16], and for the relatively large values of 1 noted
above, we can expect these terms to have some impact on
the NTM seed island calculations and on the overall non-
linear tearing saturation level [17].

In conclusion, by exploiting and extending an asymp-
totic matching method first described by Thyagaraja [7] we
have derived a fully nonlinear solution to the tearing mode
saturation problem in both the large and small island limits,
in slab and cylinder geometry. For relatively small islands,
W � Wc, our results correct and extend those in previous
literature. The case of relatively large islands, where the
resistivity profile is modified by the island itself, is con-
sidered here for the first time.

We acknowledge a fruitful exchange of information and
scientific discussions with D. Escande and M. Ottaviani,
who have developed an alternative analytic method for
solving the small island problem [18]. J. H. is also grateful
to Peter Catto and Per Helander for an illuminating
discussion.
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