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Low-Frequency Noise Controls On-Off Intermittency of Bifurcating Systems
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A bifurcating system subject to multiplicative noise can display on-off intermittency. Using a canonical
example, we investigate the extreme sensitivity of the intermittent behavior to the nature of the noise.
Through a perturbative expansion and numerical studies of the probability density function of the unstable
mode, we show that intermittency is controlled by the ratio between the departure from onset and the value
of the noise spectrum at zero frequency. Reducing the noise spectrum at zero frequency shrinks the
intermittency regime drastically. This effect also modifies the distribution of the duration that the system
spends in the off phase. Mechanisms and applications to more complex bifurcating systems are discussed.
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Among the possible behaviors of a chaotic system is
intermittent behavior. The system remains for long dura-
tions in some regular state (say a laminar state or off-phase)
and at unpredictable instants begins to explore other states
(say on-phase) before returning to the laminar state.

A simple deterministic model for intermittency was
proposed by Pomeau and Manneville [1]: a limit cycle is
weakly unstable but from time to time a reinjection mecha-
nism forces the system to return close to this limit cycle. A
few years later, a new type of intermittency was discovered
in coupled dynamical systems [2] and also identified in a
system of reaction-diffusion equations [3]. Both systems
can be approximately described by the evolution of a
weakly linearly unstable mode with a noisy control pa-
rameter. This type of intermittency was given the name
‘‘on-off intermittency’’ by Platt, Spiegel, and Tresser [4]
who pointed out its genericity when an unstable system is
coupled to a system that evolves in an unpredictable man-
ner. Experimentally, on-off intermittency has been identi-
fied in various systems including electronic devices,
electrohydrodynamic convection in nematics, gas dis-
charge plasmas, and spin-wave instabilities [5].

It is surprising that, despite the genericity of the on-off
intermittency mechanism, this effect has not been reported
more often. One might expect that any careful experimen-
tal investigation of an instability should reveal on-off
intermittency when the system is close to the onset of
instability, and is hence sensitive to unavoidable experi-
mental noise in the control parameters. This remark is the
main motivation for the present work. We show that the
amplitude of the noise is not the relevant control parameter
of on-off intermittency.

Through an analytical study of a simple stochastic sys-
tem, we identify the parameter that drives the intermittent
behavior and compare our prediction to numerical simula-
tions. We then test our prediction for a chaotic rather than a
stochastic system. Then we discuss the sensitivity of the
statistics of the laminar phase duration to the parameter
05=95(6)=064101(4)$23.00 06410
that controls the on-off intermittency. Finally, we present
applications of this result to complex systems.

One of the simplest systems that can exhibit on-off
intermittency is

_X � �a� ��t��X� X3; (1)

where � is a random process with zero mean [2]. In the
deterministic regime (no-noise), the variable X undergoes a
pitchfork supercritical bifurcation for a � 0. The attractor,
X � 0, is stable for negative a and is unstable for positive
a: X tends in the long time limit to one of its two stable
attractors �

���
a

p
. In the stochastic regime, the noise � acts as

a modulation of the forcing parameter. Note that if the
initial condition verifies X�t � 0� 
 0 then X�t� 
 0 for all
time. Henceforth we consider only positive initial condi-
tions for X without any loss of generality.

For stationary Gaussian white noise, the probability
density function (PDF) of X is derived by solving the
associated Fokker-Planck equation [6]. We define the noise
intensity by h��t���t0�is � D��t� t0�, where his is the av-
erage over realizations of the noise. Equation (1) is then
understood in the sense of Stratonovich. If a � 0, X tends
to zero and the stationary PDF is P�X� � ��X�. For posi-
tive a, one obtains

P�X� � CX�2a=D��1e�X2=D; (2)

where C is a normalization constant. For 0 � 2a=D< 1,
this PDF diverges at the origin X � 0. As pointed out in
[2], this divergence is associated with the intermittent
behavior of X, as X remains for long durations arbitrarily
close to the unstable fixed point X � 0. When 2a=D is
large, intermittency disappears and X fluctuates around its
deterministic value,

���
a

p
.

However, for colored noise, a more complex situation is
expected. It is tempting to assume that the noise amplitude���������������
h��t�2is

p
controls the on-off regime. This is not the case.

We plot in Fig. 1 the solution of Eq. (1) for two different
colored noises with the same value of h�2is. One of the
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FIG. 2. PDF of the solutions of (1) with the noise (6). The
symbols (�) and (+) correspond, respectively, to the parameters
used in Figs. 1(a) and 1(b). The full lines are the corresponding
predictions given by (4). Same figure in inset using log-log scale.
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FIG. 1. Temporal traces of the dynamical variable X�t�, solu-
tion of (1), with a � 1:25� 10�3, �2 � 0:005 and the noise
defined by (6): (a) � � � � 0:25, i.e., a=S � 0:3927;
(b) � � � � 2:5, i.e., a=S � 3:9270.
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solutions is intermittent but not the other. Hence intermit-
tency is controlled by another parameter of the system.

In order to identify this parameter, we derive an approxi-
mate expression of the stationary PDF of X using the
cumulant expansion introduced by van Kampen and shown
to be valid for small values of ��c where � is the noise
amplitude and �c its correlation time [7]. In the case under
study, two parameters appear in the expansion that are
related to the autocorrelation function:

S �
Z 1

0
h��0�����isd�; M �

Z 1

0
h��0�����ise

�2a�d�:

(3)

For a Gaussian white noise, the expansion is exact and
leads to the stationary PDF given by Eq. (2). In the follow-
ing we consider the generic case where S and M� S are
nonzero. The stationary PDF is

P�X� � CXa=S�1

��������1� �M� S�X2

Sa

��������
��1�aM=2S�M�S��

; (4)

where C is a normalization constant. The behavior of the
PDF for X close to zero is proportional to jXja=S�1. It
diverges for X � 0 so that on-off intermittency occurs if

0<
a
S
< 1: (5)

This is consistent with Fig. 1 since a=S � 0:3927 for the
intermittent signal and a=S � 3:927 for the other one. The
Wiener-Khintchin theorem states that the integral of the
correlation function, 2S, is equal to the spectrum of the
noise at zero frequency. Thus, another interpretation of the
criterion (5) is that on-off intermittency is present when the
departure from the deterministic onset is smaller than half
the value of the noise spectrum at zero frequency. This
interpretation also holds when the noise is white and
Gaussian since S � D=2. For white noise, the spectrum
has the same value, D, for all the frequencies.
06410
Consequently, the analytical result (2) does not identify
which part of the spectrum controls the intermittency.

In order to check the validity of this result, we solve
Eq. (1) numerically, using a stationary Gaussian correlated
noise ��t� with autocorrelation function [8]:

h��t���t� ��is � �2

�
cos�2���� �

�
�

sin�2��j�j�
�

� exp��2��j�j�:

(6)

The noise variance is �2 and its correlation time �c �
�2����1. This provides S � �2�=����2 ��2�� and M �
�2��� a=��=f����� a=��2 ��2�g. Therefore, by
changing � and � we can tune a=S and ��c independently.
Gaussian white noise is recovered in the limit � ! 1 with
�2=� � D. Figure 1 presents time series of X and Fig. 2
the corresponding PDFs. We also compare the predicted
criterion for appearance of intermittency (5) with the nu-
merical results. To wit, we draw in Fig. 3 a phase diagram
in the �S; a� plane using noises with different S and M. We
calculate Xmp the most probable value of X. For a > 0, the
solution X � 0 is unstable. The system is intermittent if
Xmp � 0, and nonintermittent if Xmp � 0. In these figures
and for all tested parameter values for which ��c is small,
there is a very good agreement between the numerical
results and the predictions (4) and (5).

Up to now, we have only dealt with fluctuating parame-
ters that are random processes. It is tempting to test the
prediction (4) and (5) with a deterministic but chaotic
fluctuating parameter. Thus, we study Eq. (1) when � is
obtained from the chaotic solution of the Lorenz system
[9]; i.e., we solve

_U � ���U� Y�; _Y � rU� Y �UZ;

_Z � UY � bZ;
(7)
1-2



0 0.2 0.4
0

0.4

a

S

Intermittent domain 

Non−intermittent 
      domain     

FIG. 3. Behavior of the solution of (1) for noises defined in (6)
and associated with various values of S and M. (4): intermittent
behavior, (�): nonintermittent behavior. The full line is the
transition curve predicted by (5).
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and define � by

� � �
� _Un � �1���Un

h�� _Un � �1���Un�
2i1=2

; (8)

Un �
U�hUi�����������������
h�U�hUi�2i

p , and _Un �
_U�h _Ui�����������������

h� _U�h _Ui�2i
p . Averages are now

understood as long time averages and
���������
h�2i

p
� �. The

parameter � is tuned between zero and one to change the
amplitude of the noise spectrum at zero frequency. Since _U
is the derivative of U, the value of its spectrum at low
frequencies is smaller than that of U. Increasing � in-
creases the weight of _U and thus decreases the noise
spectrum at low frequencies (accordingly the value of S).
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FIG. 4 (color online). Bottom panels: solutions of (1) with �
obtained from the Lorenz system (8). The chaotic functions � are
displayed in the top panels. The parameters are a � 0:01,���������
h�2i

p
� 0:2, and � � 0 (left panels), � � 0:8 (right panels).

Note the difference in the time scales t between the top and
bottom panels.
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The Eqs. (1) and (7) are then solved numerically for r �
25, � � 10, and b � 8=3. The solution of Eq. (7) is chaotic
and we plot examples of time series of � and X in Fig. 4. As
expected, on-off intermittency disappears when � in-
creases; i.e., S decreases. For the intermittent signal we
have a=S ’ 0:332, but a=S ’ 5:64 for the nonintermittent
one. The numerical estimates of the PDFs of X are com-
pared to the fit given by (4) (in Fig. 5). Again, for small
values of the noise amplitude, the agreement between the
prediction and the numerical results is very good.

Interesting results can also be obtained for the duration
of the laminar phases �. We define a laminar phase as
follows: X�t0� �  , X�t�<  for t0 < t < t0 � � and
X�t0 � �� �  ,  being an arbitrary threshold below which
the system is considered to be in the laminar state. Close to
the onset of on-off intermittency, the probability P��� of
the duration � of the laminar phase satisfies P��� / ��3=2

[10]. For large values of �, a cutoff in the power law
appears at finite departure from onset [11]. We have
checked numerically that for a colored noise, the PDF is
indeed proportional to ��3=2 with a cutoff for high �. The
position of the cutoff increases when S increases (a being
constant). This is consistent again with our interpretation
of the role of the noise spectrum at zero frequency: the
smaller a=S is, the longer the system remains in the lam-
inar state and the more intermittent the signal appears.

Our interpretation of the phenomenon is as follows. On-
off intermittency occurs because of a competition between
the noise and a systematic drift driven by the distance from
onset. More precisely, as pointed out in [2], when X is close
to the unstable manifold X � 0, the evolution of Y � logX
is given by _Y � a� ��t�. For positive a, _Y is positive on
average but events in which Y remains smaller than its
initial value are possible provided I �

R
T
0 ��t�dt=T re-

mains smaller than �a for a long duration. In the long
time limit, the main contribution to the integral I is due to
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FIG. 5 (color online). PDF of the solutions of (1) with �
obtained from the Lorenz system (8). The parameters are the
same as in Fig. 4 with (�) � � 0, (+) � � 0:8. The inset is the
same figure with log-log scales. The full lines are the corre-
sponding predictions (4).
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the zero frequency component of the noise. If this compo-
nent is reduced, then occurrences of the inequality I � �a
are less probable and intermittency tends to disappear.
Note that our analytical calculations are based on pertur-
bative expansions and are valid for small values of the
product of the noise amplitude with its correlation time.
However, even for a finite amplitude of noise, we have
verified that when the low frequencies are filtered out,
intermittency disappears.

We expect that the role of the zero frequency component
of the noise is generic and also pertinent for systems more
complex than the one presented here. For instance, Lücke
and Schanck studied a system similar to Eq. (1) with inertia
taken into account. Through a perturbative expansion close
to the deterministic solution, they calculated a noise-
induced postponement of the onset of instability and a
modification in the amplitude of the unstable mode. As
they pointed out later, their expansion is not correct when
the noise spectrum does not vanish at zero frequency [12].
Recent calculations for the same system have shown that
for a small departure from onset and for an Ornstein-
Uhlenbeck or a white noise, the PDF of the unstable
mode diverges close to zero [13]. In the light of our study,
both the divergence of the PDF and the failure of the
perturbative expansion are related to the same physical
effect: on-off intermittency when the noise spectrum at
zero frequency is nonzero.

Our analysis explains why many experimental investi-
gations on the effect of a multiplicative noise on an insta-
bility do not display on-off intermittency. If the noise is
high-pass filtered, as often required for experimental rea-
sons, then the regime of intermittent behavior disappears.
This is the case, for instance, in [14]: a ferrofluidic layer
undergoes the Rosensweig instability and peaks appear at
the surface. The layer is then subject to a multiplicative
noise through random vertical shaking. Close to the deter-
ministic onset, the unstable mode submitted to a colored
noise does not display intermittency.

In dynamo theory, the magnetic field is forced by the
flow of an electrically conducting fluid. The velocity of the
flow appears as a multiplicative term in the equation for the
magnetic field. If the flow topology is complex enough and
the velocity is large, a magnetic field is generated by
dynamo instability. The flow is in general turbulent at
dynamo onset so that the velocity fluctuates. We infer
that the intermittent behaviors as seen numerically by
Sweet et al. [15] are related to the presence of very low
frequencies in the spectrum of the velocity field. The same
features also occur in simple models of dynamos subject to
white noise [16]. On the contrary, experimental realiza-
06410
tions of dynamos driven by constrained flows did not dis-
play intermittency [17]. These flows, though turbulent, are
probably too constrained to display velocity fluctuations
with large enough amplitude of the spectrum at low
frequencies.

This work could be generalized to study a parametric
instability with a time-dependent forcing. For a harmonic
forcing subject to frequency or amplitude noise, intermit-
tent behaviors have been reported [18]. In these cases, the
relevant component of the noise that controls on-off inter-
mittency still remains to be identified.

This work has greatly benefited from discussions with N.
Leprovost, N. Mordant, J. Farago, S. G. Llewellyn Smith,
S. Fauve, and P. Marcq.
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