
PRL 95, 063201 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
5 AUGUST 2005
Quantum Many Particle Systems in Ring-Shaped Optical Lattices
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In the present work we demonstrate how to realize a 1D closed optical lattice experimentally, including
a tunable boundary phase twist. The latter may induce ‘‘persistent currents,’’ visible by studying the
atoms’ momentum distribution. We show how important phenomena in 1D physics can be studied by
physical realization of systems of trapped atoms in ring-shaped optical lattices. A mixture of bosonic and/
or fermionic atoms can be loaded into the lattice, realizing a generic quantum system of many interacting
particles.
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Studies of one-dimensional systems constitute an in-
tense research activity both in experimental and theoretical
physics. They are particularly interesting mainly because
quantum effects are strongest at low dimensionality and
peculiar phenomena emerge. Prominent examples are the
spin-charge separation in Luttinger liquids [1], one-
dimensional persistent currents in mesoscopic rings [2],
and transmutation of quantum statistics [3]. Most of the
approximate schemes working in higher dimensions break
down in 1D. Only for a restricted class of model
Hamiltonians can physical properties be obtained analyti-
cally through powerful techniques such as the Bethe ansatz
[4] or conformal field theory [5]. For more generic 1D
systems, numerical analysis is the standard route to extract
physical information. Degenerate atoms in optical lattices
could constitute a further tool for the investigations [6],
thus rediscovering Feynman’s ideas [7] suggesting that an
ideal system with a ‘‘quantum logic’’ can be used to study
open problems in quantum physics. Precise knowledge of
the model Hamiltonian, manipulation of its coupling con-
stants, and possibility of working with controllable disor-
der are some of the great advantages of atomic systems in
optical lattices compared with solid state devices to ex-
perimentally realize Feynman’s ideas. The upsurge of in-
terest of the scientific community has been remarkable, and
some perspectives disclosed by trapped-atom ‘‘labs’’ have
been already explored: the observation of the superfluid-
Mott insulator quantum phase transition [8], the analysis of
the Tonks-Girardeau regime in strongly interacting bosons
[9], and the physical realization of a 1D chain of Josephson
junctions [10] were relevant achievements for condensed
matter physics. Atoms are conventionally trapped either
with magnetic fields or far off resonance laser beams. For
our purposes the magnetic trapping potential has a para-
bolic symmetry. Laser light interacts with the atomic in-
duced dipoles creating attractive or repulsive potentials
depending on the sign of the detuning � from resonance
[11]. This can be used to create different potentials for
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different atoms, but with a single tunable laser beam.
Notice that no light absorption occurs in creating the
potential; therefore, the medium can be considered trans-
parent to the laser.

So far only optical lattices with open boundary condi-
tions (OBC) have been realized. This constitutes an ex-
perimental limitation, since a variety of studies for finite
1D lattices with periodic boundary conditions (PBC) exists
in the literature. In the same way as Gaussian laser beams
are useful to produce open optical lattices, we shall take
advantage of the rotational symmetry of Laguerre-Gauss
(LG) laser modes to produce closed optical lattices. LG
beams, obtained experimentally making use of computer
generated holograms [12], have already been used in the
field of ultracold atoms [13]. A LG mode with frequency
!, wave vector k, and amplitude E0 propagating along the
z axis can be written in cylindrical coordinates �r; ’; z� as

[14] E�r; ’� � E0fpl�r�e
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, Ln�m�x� being
Laguerre polynomials. The numbers p and l label the
radial and azimuthal quantum coordinates, respectively.
The lattice modulation is obtained by interference of a
LG beam with a plane wave E0e

i�!t�kz�: in the far field,
the interferogram is periodic in ’ with l wells. For even l a
perfect 1D ring with L � l lattice sites is obtained. By
reflecting the combined beam (LG beam plus plane wave)
back on itself one achieves confinement also along z.
Indeed, a series of disk shaped traps are obtained. We point
out that tunneling between the disks tz can be made much
weaker than the corresponding tunneling within each ring
t� adjusting r0=� (i.e., focusing the LG beam). Such a
parameter depends monotonously only on L; for L * 15,
tz=t� & 10�2 can be achieved with r0=�� 100. The re-
sulting lattice potential (see Fig. 1) is described by
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Vlatt � 4E2
0	1� f2pl � 2fpl cos�l’�
 cos�kz�2: (1)

Note that, different from [13], here we need the laser
frequency to be tuned below the atomic resonance since
we want to trap atoms into the ring. For example, with a
laser intensity of I�5W=cm2 and � � �106 MHz the
potential wells would be separated by a barrier of �5 �K
much larger than the chemical potential of a standard
condensate (whose temperature can reach few nK); with
these parameters the scattering rate is � 1 photon= sec . It
is worth noting that, because of the relation: Ljn�mj
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, LG modes can be real-

ized also from Hermite-Gauss modes (modulo a�=2 phase
change). Such a ‘‘mode converter,’’ realized experimen-
tally in [15], can switch from an open to a closed lattice
potential with the same periodicity and L. As we shall
discuss further, this device might be useful in the
experiments.

We have just illustrated how to realize an optical lattice
with PBC. Now we show how to twist them. We apply an
external, cone-shaped magnetic field B � B’e’ � Bzez.
In this way the atomic magnetic dipoles �mF

experience a
field varying along the ring, eventually equipping the
periodic lattice by a twist factor: � ! ei�mF� at each
winding, � being a generic wave function. The phase
factor�mF

� mF� cos , with tan � B’=Bz, is the analog
of the Berry phase [16] of the two state system correspond-
ing to the Zeeman splitting of the hyperfine atomic ground
states; the role of time is played by the angle ’. We can
adjust �mF

using an additional laser beam (with a suitable
frequency), relying on the ac Stark shift: AE�mF�, where
the function AE depends on the intensity of the laser and on
the Clebsch-Gordan coefficient of the electric dipole ma-
trix element [17]. The resulting phase twist is �" �

:

AE�mF� �mF� cos , where " � mF. Whereas boundary
twists induced by a magnetic field piercing the ring are
‘‘symmetric,’’ �� � ��, our protocol realizes 1D models
with a tunable �", thus opening the way to novel inves-
tigations discussed below.

For OBC, �" can be ‘‘gauged away’’ completely from
the system. In contrast, the boundary phase cannot be
x
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FIG. 1 (color online). The optical potential resulting from the
interference of a plane wave with an LG mode with L � 14, p �
0. For p � 0 the potential is virtually unaltered.
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eliminated for closed loops and alters the phase diagram
of the system [18]. In fact, �" emerges from the sum of
site-dependent phases causing an increase of the velocity
field ( / to the tight binding amplitude t) that, in absence of
dissipation, may set a persistent current. Therefore, differ-
ent regions in the phase diagram are identified depending
on the dynamical response of the system by perturbing �".
The effect is reflected in the curvature of the N -particle
energy levels En with respect to the phase twist: #" �
L2�npn	En��"� � En�0�
=�N t�2

"�, where pn �
e�$En=Z are the Boltzmann weights. For (spinless) bosons
#� � #� � # is proportional to the superfluid fraction.
Persistent currents are studied analyzing the charge stiff-
ness Dc / #� � #� (for electrons, it is the zero frequency
conductivity or Drude weight); a nonvanishing Dc sets a
persistent current, visible by releasing the condensate for a
time much longer than the typical atomic oscillation period
in the lattice wells. Then the spatial distribution of the
condensates j��r � kt; t�j is indicative of the initial
atomic momentum distribution j��k; 0�j [19]; in particu-
lar, the phase difference between atoms trapped in different
sites produces characteristic interference patterns in the
released condensates. In Fig. 2 we show such a pattern
for condensates released from the potential of Fig. 1 in
mean-field approximation (see also Fig. 3). Supercurrent/
superfluid fractions can be studied looking at the response
of the system under imprinting of a dynamical phase
(d�j; "�*+ to the atomic wave functions, flashing the
atoms with an additional Gaussian laser beam (which can
be much closer to resonance than those creating the poten-
tial) with a waist larger than the LG mode, and with
’-dependent intensity. The time *+ must be too short to
induce atomic motion by absorption during the pulse.

The case �� � ��� is useful to study the spin stiffness
Ds / #� � #� indicating long range spin correlations in
the system (for charged particles Ds would be proportional
to the inverse bulk spin susceptibility [18]). Generic values
of �� � ��� can be seen also as a result of certain
correlated-hopping processes (on the untwisted models)
[20] and correspond to more exotic cases that, as far as
FIG. 2 (color online). Interference pattern for condensates
released by the lattice (1), obtained resorting to the analog of
light diffraction from a circular grating [19]. The figures show
the square of the order parameter j �kx; ky�j

2 �

j 0�kx; ky��
L�1
j�0 cosfi	kx cos�2�j=L� � ky sin�2�j=L� ��j
gj

2.
On the left �j � 0 for all the condensates; on the right the atoms
move along the ring with velocity / r�; the interference pattern
reflects a loss of matter at the trap center caused by centrifugal
effects.
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FIG. 3 (color online). The zero temp. momentum distribution
for fermions with Hubbard dynamics is presented: j��kx; ky�j

2 /

jw�kx; ky�j2�i;jeik��xi�xj��k�e
ik���i��j�hnk� i; N =L � 32=16

(N =L � 1 is the less advantageous case to discern the effects
of � at finite size, since the metal-insulator transition strongly
suppresses Dc [34]); hnk� i is calculated perturbatively at second
order in U=t. For � � 0 (left), k� � f���N �

1�=L . . .��N � 1�=Lg. For � � 0, k� � f���N � 1�=L�

�=L . . .��N � 1�=L��=Lg; the asymmetry in j��kx; ky�j
2

is due to the offset of hnk� i caused by �.
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we know, have not been realized yet in physical systems.
To be specific, we consider N fermions described by the
Hubbard model with particle-density modulated kinetic
energy

HHub � �
X
j;"
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X
j;"
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where cj;"’s are fermionic operators, and Nl;" :�cyl;"cl;".
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w�x�a� [bs, a, and w�x� indicates the scattering
length, the lattice spacing, and Wannier functions, respec-
tively] play the role of the Coulomb and hopping ampli-
tudes, respectively; �j;" is of the order of the Bloch band
separation [21]; the site dependence can be achieved by
tuning the magnetic confinement out of the symmetry axis
of the optical ring. For the model (2) in a closed lattice, (3)
can be gauged away everywhere but at the boundary;
therefore, (2) and (3) is equivalent to the ordinary
Hubbard model, but with twisted boundary conditions
(BC) [20]. The phase twist is �" :� ��"� �
��1�

���"�N �" ���1�
���"��N " � 1�, where ��1�

���"��

�L
j�1(j;m�"�, ��"���L

j�1	0j�"��Aj;j�"�
, ��1�
���"��

�L
j�1

j�m�1;m
Aj;m�"��Am;m�1�"��Am�1;m�1�"�. Hence, load-

ing the Hubbard model into the twisted ring effectively
leads to the physical realization of the model (2) and (3).
To point out the effects of U (smearing of the Fermi
distribution with algebraic singularity at kF) in the persis-
tent current, j��k�j2 is calculated for the Hubbard ground
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state at smallU=t, and with �" � ��"�,���� � ���� �
� (see Fig. 3).

The proposed setups could be used to study several
issues in one-dimensional systems.

(I) The concept of conformal invariance plays a central
role in 1�1-dimensional critical phenomena: universality
is characterized by a single parameter, the conformal
anomaly c. The physical meaning of c resides in the
concept of Casimir energy, namely, the variation of the
vacuum energy density to a change in the BC. For PBC it
was shown [5] that the finite size correction to the bulk
ground state energy is related to c: EPBC � Ebulk �
��cv=6L; resorting the modular invariance this correc-
tion should be visible in the specific heat of the system, at
low temperature: C�T� � �cLT=3v, for each collective
mode of the system; the speed of sound v can be extracted
from the dispersion curve, at small k: v � �E=�k, for
sufficiently large L (for the XXZ model, numerical analy-
sis suggests that L * 15 [22]). Except for integrable mod-
els, it is hard to measure or even have numerical estimates
of c in solid state systems [5,23]. With the presented setups
for highly controllable loaded models these measurements
can be done with unique accuracy. Both C�T� and �E=�k
can be measured following the techniques employed by
Cornell et al. [24]. To discern finite size effects in C�T� the
PBC to OBC converter discussed above could be a valid
tool. Indeed, the finite size correction to Ebulk for OBC is
also proportional to c, but with a different coefficient [5].
Then: cv � 8L

� �EPBC � EOBC� �F S, where F S is the bulk
limit of the surface energy that, being nonuniversal, can be
fixed by performing the measurements for different L
(mimicking a ‘‘finite size scaling analysis’’). Remarkably,
both the energies EPBC and EOBC might be accessible
measuring the second moment of the velocity of the re-
leased condensate [25].

(II) A general model we can engineer in the ring-shaped
lattice is

H � HBH �HHub �HI; (4)

where HBH is the Bose-Hubbard Hamiltonian [8] and HI
describes a density-density, fermion-boson interaction
[26]. By tuning � within the fine structure of the fermionic
atoms, a spin dependence can be inserted in the hopping
amplitude of the Hubbard model: t! t". At N =L � 1
and t" � U the Hubbard ring effectively accounts for the
physical realization of the twisted XXZ model with anisot-
ropy 0 � �t2� � t2��=�2t�t�� and external field h �
4�""t2"=�" [21]. Loading quantum systems described
by Hamiltonians of the type (4) in lattices with twisted
BC could serve to study charge and spin stiffness in
physical systems with tunable interaction and/or disorder.
For example, a mixture of 87Rb and 40K atoms constitutes
an ideal system to check the recent experimental evidence
suggesting that the supersolid order [27] would be effec-
tively favored by the insertion of fermionic degrees of
freedom into homogenous bosonic systems. The off-
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diagonal long range order manifests in superfluid currents.
Jumps between nonvanishing supercurrents should reveal
the existence of the supersolid phase [28]. This should be
accompanied by a macroscopic occupation in the conden-
sate at a nonvanishing wave vector [��=�na�, n � 2]
signaling the charge-density-wave instability [29]. The
two condensates should be traced in the interference
fringes.

It was proved that exactly solvable twisted
Hubbard=XXZ rings [18,30] are equivalent to untwisted
models for particles with intermediate statistics; this results
in modifications of the exponents of the (low energy)
correlation functions [20]. The spatial profile of the latter
might be detected by photoassociation techniques, as sug-
gested in [31]. (III) Another interesting issue we can study
is the conjecture [32] that Poisson or Wigner-Dyson level-
statistics manifest in that the thermal Drude weights have
qualitatively different slopes for integrable (smooth alge-
braic temperature-decrease, universal behavior of
D�T�=D�0�) or nonintegrable (sharp, nonuniversal sup-
pression of D�T�=D�0�) systems. Because of the precise
knowledge of the model-Hamiltonian under analysis, we
can address the problem directly in a physical system. For
example, we could consider 40K pure-XXZ rings with
twisted BC for different L’s; using the Feshbach resonance
one could tune bs � 2a; the resulting XXZ model with
next-nearest neighbor density-density interaction is non-
integrable (another way is to destroy the integrability in-
troducing disorder into the ring by site-dependent hj). In
short: integrability can be switched on and off by tuning the
Feshbach resonance (or adjusting the energy offsets hj).
The presence of persistent currents can be detected along
the lines described above (see Figs. 2 and 3). Numerical
investigations for the XXZ model suggest that the effect
should be visible for T=L * 0:10 [33].

In summary, we have suggested a number of protocols to
realize closed rings of many quantum particles, by optical
means. This is possible by employing slight variations and
combinations of techniques already developed within the
current experimental activity in atomic physics. We have
discussed how several open problems in condensed matter
physics can be enlightened by such a setup. We finally
observe that the clockwise/anticlockwise currents in a few-
wells-ring constitutes a controllable two state-system
analogous to the flux qubit realized by a SQUID. As the
current is neutral, the corresponding decoherence rate is
much lower compared to solid state devices (charged cur-
rents). Information transfer could be mediated by an
induced-dipole-dipole atomic interaction.
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[12] S. Chàvez-Cerda et al., J. Opt. B 4, S52 (2002).
[13] See, for example, K. Bongs et al., Phys. Rev. A 63,

R031602 (2001).
[14] E. Santamato et al., Opt. Express 10, 871 (2002).
[15] M. W. Beijersbergen et al., Opt. Commun. 96, 123 (1993).
[16] This generalizes the Berry phase imprinted in A. E.

Leanhardt et al., Phys. Rev. Lett. 89, 190403 (2002);
here, atomic losses due to Majorana spin flips [E.
Majorana, Nuovo Cimento 9, 43 (1932)] are expected to
be negligible, as the atoms are held away from the trap
axis.

[17] B. W. Shore, Phys. Rev. A 17, 1739 (1978).
[18] B. S. Shastry and B. Sutherland, Phys. Rev. Lett. 65, 243

(1990).
[19] P. Pedri et al., Phys. Rev. Lett. 87, 220401 (2001).
[20] H. J. Schulz and B. S. Shastry, Phys. Rev. Lett. 80, 1924

(1998); A. Osterloh, L. Amico, and U. Eckern, Nucl. Phys.
B588, 531 (2000).

[21] L.-M. Duan, E. Demler, and M. D. Lukin, Phys. Rev. Lett.
91, 090402 (2003).

[22] J. C. Bonner and J. B. Parkinson, J. Appl. Phys. 63, 3543
(1988).

[23] N. Motoyama, H. Eisaki, and S. Uchida, Phys. Rev. Lett.
76, 3212 (1996).

[24] D. S. Jin et al., Phys. Rev. Lett. 77, 420 (1996); 78, 764
(1997).

[25] J. R. Ensher et al., Phys. Rev. Lett. 77, 4984 (1996).
[26] A. G. Truscott et al., Science 291, 2570 (2001); see M. A.

Cazalilla and A. F. Ho, Phys. Rev. Lett. 91, 150403 (2003)
for a Luttinger liquid description of (4).

[27] R. Fazio and H. van der Zant, Phys. Rep. 355, 235 (2001).
[28] E. Kim and M. H. W. Chan, Nature (London) 427, 225

(2004). The supersolid critical temperature of 4He is
shown to be enhanced by the insertion of few ppm of 3He.
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