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Nonsingular Black Holes and Degrees of Freedom in Quantum Gravity
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Spherically symmetric space-times provide many examples for interesting black hole solutions, which
classically are all singular. Following a general program, spacelike singularities in spherically symmetric
quantum geometry, as well as other inhomogeneous models, are shown to be absent. Moreover, one sees
how the classical reduction from infinitely many kinematical degrees of freedom to only one physical one,
the mass, can arise, where aspects of quantum cosmology such as the problem of initial conditions play a
role.
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One of the main issues to be addressed by quantum
gravity is the singularity problem of general relativity.
While the classical theory is very successful in describing
space-time on scales that can be probed today, it is incom-
plete because it predicts the generic presence of singular-
ities: boundaries of space-time that can be reached by
observers in a finite amount of time, but at which point
the theory becomes inapplicable. Usually, curvature or
energy densities and tidal forces diverge there, implying
unphysical conditions.

One explanation is that the picture of a smooth space-
time underlying the classical theory is appropriate only at
large scales, while at small scales the structure is discrete.
This has, indeed, been substantiated by looking at cosmo-
logical models in loop quantum gravity [1], where the dis-
crete quantum geometry has been shown to remove singu-
larities [2]. Even at the classical level there are indications
for a breakdown of the smooth picture at small scales: The
Belinskii-Khalatnikov-Lifschitz (BKL) scenario [3] pro-
vides a scheme for the general approach to a classical
singularity by considering dominant contributions to the
field equations in this limit. It turns out that only terms with
time derivatives remain such that spatial points decouple
and their geometries can be described by the most general
homogeneous model. This Bianchi type IX model is clas-
sically chaotic [4], and so geometries in different points are
completely unrelated, implying a complicated classical
singularity with structure at arbitrarily small scales.

Since the removal of singularities in loop quantum
cosmology applies for all homogeneous models [5,6], in
particular, the Bianchi IX model, one can combine this
result with the BKL picture and expect that all singularities
are removed by quantum geometry. However, the BKL
picture has not been proven classically, and the above
argument would require it to hold even in quantum gravity.
In particular, the latter point is questionable because, for
one, already the approach to a single Bianchi IX singularity
[4] in quantum cosmology is modified, removing the clas-
sical chaos [7,8]. It is thus necessary to study inhomoge-
neous models in loop quantum gravity and look at the
singularity issue without assuming homogeneity. If this is
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possible, one can also test the validity of the BKL picture in
the quantum context. This is what we do here in the case of
spherical symmetry, which is not only the simplest inho-
mogeneous situation but also allows interpretations for
black holes. The same methods apply to other models
that do have local degrees of freedom, providing the first
demonstration of the absence of singularities in inhomoge-
neous quantum gravity.

Singularities.—The main problem caused by a singular-
ity is the fact that it presents a boundary to physical
evolution. In order to see whether it persists in quantum
gravity, then, the following steps have to be performed.
This has to be done in a manner that is independent of
coordinate or other gauge choices, and only potential
simplifications resulting from the symmetry reduction
should be used. One first has to locate classical singulari-
ties on the phase space of physical fields, the spatial metric
qab, and extrinsic curvature related to _qab. Conditions to
specify the singular part of phase space must be chosen
such that any solution to the theory, which is a trajectory on
phase space, intersects this singular part exactly when it
develops a singularity. The solution space is, in general,
quite complicated to study, but one can select a variable T
on phase space that is transversal to the singular part, a
local internal time rather than coordinate time, i.e., which
fulfills T � 0 in a neighborhood about zero exactly at the
singular part. Finally, one needs to write down the quantum
evolution of geometry in the local internal time and check
whether or not it stops at T � 0. If one can find a T such
that the quantum evolution does not stop anywhere, the
quantum system is nonsingular. This is the analog of the
classical notion of space-time completeness.

We illustrate this scheme with isotropic cosmology
where the phase space is two dimensional with the scale
factor a (the spatial radius of the universe) and its time
derivative. Singularities occur only if the scale factor van-
ishes such that a � 0 specifies the singular part. An ob-
vious local internal time (which in this case is global) is
given by T � a, or with a slight modification the triad
variable p with jpj � a2 and sgnp being the orientation
of space. Using this variable makes no difference classi-
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cally, but is important in quantum geometry where triads
are basic variables. At the quantum level one can then first
note that operators for p�1 are finite [9], indicating already
that curvatures and energy densities do not diverge, and
most importantly that the quantum evolution is given by a
difference equation for the wave function in p, which does
not stop at p � 0 [2]. Thus, there is no singularity in
isotropic loop quantum cosmology.

Spherical symmetry.—The case of interest here is
spherical symmetry, where the kinematical phase space
on which we have to locate singularities is infinite dimen-
sional and spanned by the metric components in ds2 �
qx�x�dx2 � q��x�d�2 (in polar coordinates) and their time
derivatives. As an example, we can look at the
Schwarzschild solution for a black hole of mass M, qx �
�1� 2M=x��1, q� � x2. The singularity is reached for
x � 0, at which point both metric coefficients are zero.
The question then arises which one, or both, of them must
be zero as a condition for a singularity. It turns out that q�
is zero only at the singularity, while qx can also become
zero elsewhere, i.e., at the horizon x � 2M, when one
chooses a different gauge (e.g., with homogeneous coor-
dinates in the interior). This point illustrates why gauge
independence is essential in answering the singularity
problem: even the very first step, finding where singular-
ities would develop, depends on it. In fact, in this case we
can choose our coordinates x and t at will, which affects the
form of qx and points where it can be zero. In spherical
symmetry, however, the fact that q� � 0 at the singularity
is unaffected (even though, of course, q� can change as a
function of x when we change coordinates).

We can now consider a spatial slice that locally, around a
point x0, approaches the classical singularity such that
q��x0� ! 0. The above discussion shows that T �
q��x0� is a good local internal time, which completes
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setting up the problem from the classical side. It now
remains to formulate the quantum evolution in local inter-
nal time and to check if it stops at T � 0.

Quantum geometry.—Again we first transform to triad
variables jExj � q� and E’ �

�����������

qxq�
p

, which become ba-
sic operators in quantum geometry. The (local) orientation
of space around a point x0 is now given by sgnEx�x0� where
Ex unlike E’ can take both signs. Moreover, the discussion
in metric variables shows that T � Ex�x0� is our local
internal time such that the situation, so far, is analogous
to that in the isotropic case: triad variables lead to a local
internal time, which takes values at both sides of the
classical singularity, T � 0 defining a manifold in super-
space rather than at the boundary. It is important to note
that the introduction of triad variables was seen as a
necessary step toward a background independent quantiza-
tion. Now it turns out that this also changes the singularity
structure on phase space in a way that was important for
removing cosmological singularities. Nevertheless, even
though the singularity is now located in superspace, the
classical evolution still stops there and is not able to con-
nect from positive to negative T. This still has to be
checked by the quantum evolution, the most crucial point.

Quantum evolution follows from the Hamiltonian con-
straint operator acting on states in the form of a lattice
model with basis [10]

|
→
k, µ〉 := • • •· · · µn · · ·

· · · kn kn+ 1 · · ·
→

where the integer labels ke on edges are eigenvalues of the
operator Êx and the positive real labels ��v� at vertices are
those of Ê’. Positions of vertices do not refer to a back-
ground space, and the lattice model represents the contin-
uum theory. The constraint then acts by [11]
Ĥ[N] • •

•

•

•

•k− k+ = Σ v N(v) Ĉ0(k) k− k+ + ĈR+ (k) k− k+ + 2 + ĈR− (k) k− k+ − 2

+ ĈL+ (k) k− + 2 k+ + ĈL− (k) k− − 2 k+ + · · ·
summing over all vertices of the lattice, the dots indicating
further terms such as a matter Hamiltonian whose detailed
form is not important here. The known coefficients
ĈI�k� � CI�k�ĈI consist of functions CI�k� of the edge
labels and operators ĈI acting only on the dependence on
vertex labels �. A general state is now a superposition
j i � 
 ~k; ~� �

~k; ~��j ~k; ~�i whose coefficients  � ~k; ~�� define
the state in the triad representation. The constraint
Ĥ
N�j i � 0 has to hold true for all functions N with
independent values N�v�, giving one equation for each
vertex that in the triad representation takes the form

Ĉ0�k� �k�; k�� � ĈR��k� �k�; k� � 2�

� ĈR��k� �k�; k� � 2� � ĈL��k� �k� � 2; k��

� ĈL��k� �k� � 2; k�� � � � � � 0
of a difference equation, where we have suppressed the
vertex labels on which the ĈI act and unchanged k.

We now solve this set of equations with initial and
boundary values for the wave function. To define a solution
scheme we proceed iteratively from vertex to vertex, start-
ing at one side @ of the lattice. We assume that the bound-
ary values for all �@ and k��@� �: k� of the wave function
as well as values for large positive ke � k0 and k0 � 1 at all
edges e are given, which means that we have specified the
initial situation, e.g., by a semiclassical state specifying the
initial slice far away from the singularity. The equation can
then be solved for ĈR� �k�; k� � 2� in terms of values of
the wave function specified by the initial conditions. This
brings us one step further because we now have informa-
tion about the wave function at k� � 2 for a smaller edge
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label (our local internal time) evolving toward the classical
singularity.

Next, we have to know how to find  from its image
under ĈR�. This can be done by specifying conditions for
the wave function at small � (which is not in the singular
part of minisuperspace but represents an ordinary bound-
ary) and happens in exactly the same way as in homoge-
neous models [5]. Before continuing, we notice that this
indicates the presence of aspects of the BKL picture in
quantum gravity. However, we still have to try to evolve
through the classical singularity, i.e., ke � 0, which will be
the main test. One crucial difference to cosmological mod-
els is that the coefficients ĈI�k� are not only functions of
the local internal time, k�, studied in the iteration but also
of neighboring labels such as k�, which do not take part in
this difference equation but the dependence on which has
been determined in iteration steps for previous vertices.
This is clearly a new feature coming from the inhomoge-
neous context, and it has a bearing on the singularity issue.

Singularities are removed if the difference equation
determines the wave function everywhere on minisuper-
space once initial and boundary conditions have been
chosen away from classical singularities. The simplest
realization is by a difference equation with nonzero coef-
ficients everywhere. However, this is not automatically the
case with an equation coming from a general construction
of the Hamiltonian constraint, and so has to be checked
explicitly. Here, it turns out [11] that a symmetric con-
straint, indeed, leads to nonzero functions CI�k�, which
then will not pose a problem to the evolution. All values of
the wave function, at positive as well as negative k, are
determined uniquely by the difference equations and
chosen initial and boundary values. The evolution thus
continues through the classical singularity at zero k: there
is no quantum singularity. Other quantization choices can
lead to quantum singularities, providing selection criteria
to formulate the quantum theory with implications also for
the full framework.

Consequences.—We have shown that the same mecha-
nism as in homogeneous models contributes to the removal
of spherically symmetric classical singularities. Key fea-
tures are that densitized triads as basic variables in quan-
tum geometry provide us with a local internal time taking
values at two sides of the classical singularity, combined
with a quantum evolution that connects both sides. No new
ingredients are necessary for inhomogeneous singularities,
only an application of the general scheme to the new and
more complicated situation.

As in cosmological models, the argument applies only to
spacelike singularities such as the Schwarzschild one. The
reason is that we evolve a spatial slice toward the classical
singularity and test whether it will stop. A timelike or null
singularity would require a different mechanism that is not
known at present. Thus, cases like negative mass solutions
seem to remain singular, which is a welcome property
helping to rule out unwanted solutions leading to instabil-
ity [12].
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This scenario and its form of difference equations do not
only apply to vacuum black holes but also to spherically
symmetric matter systems. In such a case, there would be
new labels for matter fields, and a contribution to the
constraint from the matter Hamiltonian. As this does not
change the structure of the difference equation, the same
conclusions apply. Moreover, models for Einstein-Rosen
waves have a similar structure just with a new vertex label.
Also in this case, with or without matter fields, the analysis
goes through such that the absence of singularities can be
demonstrated even in situations with local gravitational
degrees of freedom.

There are differences between homogeneous models and
these inhomogeneous cases, and the inhomogeneous
analysis is much more nontrivial. In homogeneous models
there are several ambiguities in the constraint operator, and
several choices lead to nonsingular evolution. In more
complicated situations such as those studied here, not all
options remain available. In particular, we had to use a
symmetric ordering of the constraint in order to have non-
vanishing coefficients of the difference equation. In homo-
geneous models one can also work with a version whose
coefficients vanish right at the singularity. The evolution
then still continues since the value at the classical singu-
larity simply decouples and does not play a role for the
evolution. Instead, one can use the behavior to find dy-
namical initial conditions [13]. This is also possible here
for evolution in local internal time, but then the decoupled
value at k� � 0 is not determined and in general is needed
for the wave function at other values of k�. The inhomoge-
neous evolution would thus break down, and this choice of
constraint is ruled out.

There is a difference in the constraint operator we used
compared to a common expression in the full theory [14].
This issue is visible only in inhomogeneous models, and
consists in whether or not the constraint creates new edges
and vertices, or just changes labels of existing ones. We
chose the second possibility, which has already been con-
sidered as a modification in the full theory [15]. There, it
can better explain the presence of correlations at an in-
tuitive level, but makes checking anomaly freedom more
complicated. The main problem of an anomalous quanti-
zation would be that too many states could be removed
when imposing the constraints, leaving not enough phy-
sical solutions. This issue can be checked here with the
constraint we used. If there is no matter field present,
we expect just one physical degree of freedom, the
Schwarzschild mass M. In our solution scheme we started
with a boundary state  @ corresponding to this degree of
freedom, and with this state being free it is already clear
that we do not lose too many states. It is even possible to
check whether or not the number of independent physical
solutions is correct, i.e., not too large either. In the iteration
we solve one difference equation for  at each vertex, such
that any freedom here would provide new quantum degrees
of freedom. Since the difference equation for  has the
same form as that in homogeneous loop quantum cosmol-
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ogy, the number of quantum degrees of freedom is formally
related to the initial value problem of quantum cosmology.
A possible physical meaning is to be checked in explicit
examples.

In the isotropic case there are, indeed, dynamical initial
conditions following from the dynamical law [13,16]
which, if realized in our context, would imply that solu-
tions for  are unique and the mass is the only quantum
degree of freedom. However, these conditions rely on the
fact that leading coefficients of the difference equation can
vanish, which we have ruled out for inhomogeneous mod-
els. Moreover, the uniqueness of a quantum cosmological
wave function depends on the preclassicality condition of
[13]. Other mechanisms to select unique cosmological
solutions are thus needed, such as from observables or
the physical inner product [17]. This issue is quite compli-
cated for difference equations, in particular, in anisotropic
models [18]. Nonetheless, a simple counting of free vari-
ables supports the connection to initial conditions: The
vacuum spherically symmetric case has difference equa-
tions in three independent variables, an edge label k and
two neighboring vertex labels�. Homogeneous loop quan-
tum cosmology gives rise to an equation of similar struc-
ture and also three variables, so if we assume that there is a
mechanism for a unique solution it will also apply to black
holes of a given mass. Adding matter fields (or more
gravitational freedom as in Einstein-Rosen) increases the
number of independent variables to five in inhomogeneous
models (two new vertex labels) as opposed to four in
homogeneous matter models. The type of difference equa-
tions thus agrees in homogeneous and inhomogeneous
models in vacuum, but not when local degrees of freedom
are present.

Thus, the structure of the Hamiltonian constraint equa-
tion from loop quantum gravity can potentially provide
explanations for issues as diverse as the singularity prob-
lem in cosmology and black hole physics, initial conditions
in quantum cosmology, the semiclassical limit, and the
issue of quantum degrees of freedom. We emphasize that
many of these connections still have to be checked in
generality. Still, such connections between seemingly un-
related issues in quantum gravity can be seen as support for
the internal consistency of the whole theory and, hopefully,
provide guidance for future developments.

We can finally come back to the approach to a classical
singularity and the BKL picture. Our results here do not
rely on an extension of the BKL picture to the quantum
situation. First of all, the situation is conceptually different
because evolution is now studied for a wave function in
local internal time T, rather than the spatial metric in
coordinate time. Nevertheless, at first sight a similar pic-
ture arises here from the quantum equation: as used in the
previous arguments, the equations can be reduced to ordi-
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nary difference equations in T, where neighboring edges
just contribute via an inhomogeneity of the difference
equation. The inhomogeneous situation, however, does
play an important role right at the classical singularity
where some versions that would be allowed in homoge-
neous models are ruled out.

Given that the techniques necessary for the quantum
theory are similar to lattice models, it is easy to implement
them in numerical quantum gravity. This opens the door to
numerical investigations of many problems that are still
actively pursued in classical gravity [4], such as the ap-
proach to classical singularities and the issue of gravita-
tional collapse and naked singularities. This requires
studying horizons in addition to classical singularities,
which can also be done at the quantum level [19]. As we
have seen, there are many nontrivial quantum effects that
play together in just the right way to ensure the absence of
singularities, which has prospects for other effects in the
physics of black holes [20].
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