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Atomic Fermi Gas in the Trimerized Kagomé Lattice at 2=3 Filling
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We study low temperature properties of a spinless interacting Fermi gas in the trimerized kagomé
lattice. The case of two fermions per trimer is described by a quantum spin 1=2 model on the triangular
lattice with couplings depending on the bond directions. Using exact diagonalizations we show that the
system exhibits nonstandard properties of a quantum spin-liquid crystal, combining a planar antiferro-
magnetic order with an exceptionally large number of low-energy excitations.
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One of the most fascinating recent trends in physics of
ultracold gases concerns atomic gases in optical lattices,
where strongly correlated systems may be realized. Such
systems offer an ‘‘atomic Hubbard toolbox’’ [1] to simulate
various sorts of Hubbard models, and to study phenomena
known in condensed matter physics in an unprecedently
controlled manner. To name just a few examples, atomic
lattice gases may serve to study various spin models [2], to
simulate high Tc superconductivity [3], to investigate a
variety of quantum disordered systems [4], or to process
quantum information [5]. Seminal experiments of Ref. [6]
have stimulated a great interest in experimental studies of
atomic lattice gases (cf. [7]).

Particularly fascinating in this context is the possibility
of studying quantum frustrated antiferromagnets, which lie
at the heart of modern quantum magnetism [8]. Recently
we have proposed how to create ideal and trimerized
kagomé optical lattices, and have studied physics of vari-
ous quantum gases in such lattices [9]. A Fermi-Fermi
mixture with half filling for both species in the limit of
strong interspecies coupling behaves in the ideal kagomé
lattice as a spin 1=2 Heisenberg antiferromagnet (KAF).
Such a system (having so far no experimental realization
among solid state systems) is a paradigmatic, although not
yet fully understood (cf. [10]) example of a quantum spin
liquid of type II [11].

In Ref. [9] we have also discussed briefly the case of an
interacting spinless Fermi gas in the trimerized kagomé
lattice at filling 2=3 (2 atoms per trimer). Such a system
behaves as a quantum magnet on the triangular lattice with
couplings that depend on bond directions, and is particu-
larly interesting since: (i) it describes the physics of the
trimerized KAF in the plateau region at one-third of the
saturation magnetization [12]; (ii) it has itself fascinating
properties, expected to be generic for ‘‘multimerized’’
frustrated systems; (iii) it is a paradigmatic Fermi system
to study in trimerized lattices; (iv) it is experimentally
feasible. In this Letter we study the low temperature phys-
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ics of this system using exact diagonalizations of the
Hamiltonian for 12; . . . ; 24 spins. We show that for effec-
tively ferromagnetic couplings the system exhibits the
nonstandard properties of a quantum spin-liquid crystal,
combining planar antiferromagnetic order with an excep-
tionally large number of low-energy excitations, and a
small (if any) gap. For the effectively antiferromagnetic
coupling the quantum results agree very well with the
classical results indicating antiferromagnetic planar order
and a gapped spectrum.

The experimental realization of the considered system
requires a creation of trimerized kagomé lattice, using
superlattice techniques as shown in Ref. [9]. The spinless
interacting Fermi gas can then be formed, for instance, in a
Bose-Fermi mixture, in the strong coupling limit, when
bosons form a Mott insulator (MI), and fermions together
with 0; 1; . . . bosons (bosonic holes) form fermionic com-
posites [13]. Alternatively, one could use a gas of polarized
ultracold dipolar fermions that interact via a repulsive
dipolar potential.

The spinless interacting Fermi gas in the trimerized
kagomé lattice is described by the extended Fermi-
Hubbard Hamiltonian HFH � �	habi�tabf

y
afb � H:c:� �

	habiUabnanb, where a � f
; ig with 
 referring to intra-
trimer indices and i numbering the trimers. The tab and Uab
take the values t and U for intratrimer, and t0 and U0 for
intertrimer hopping, na � fyafa, and fa is the fermionic
annihilation operator. The sites in each trimer are enum-
erated as in Fig. 1(a). We denote the three different intra-
trimer modes by f�i� � �f1;i � f2;i � f3;i�=

���
3

p
(zero

momentum mode), and f�i�
 � �f1;i � z
f2;i � z2
f3;i�=
���
3

p

(left and right chirality modes), where z
 � exp�
2�i=3�.
In the limit of weak coupling between the trimers of the

original kagomé lattice, the problem of two fermions per
trimer (filling 2=3) becomes equivalent to a quantum mag-
net on a triangular lattice with couplings that depend on the
bond directions as described by the Hamiltonian
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FIG. 1. (a) Enumeration of intertrimer (intratrimer) nearest
neighbors. (b) Classical 120� state with left chirality.
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Htrimer �
J
2

XN

i�1

X6

j�1

si��i!j�sj� ~�j!i�; (1)
where N denotes number of trimers, J � 4U0=9, and the
nearest neighbors are enumerated as in Fig. 1(a). In Eq. (1)
we have si��� � cos���s�i�x � sin���s�i�y , where the
spin-1=2 operators s�i�x , s�i�y are defined as s�i�x � �f�i�y� f�i�� �

f�i�y� f�i�� �=2, s�i�y � �i�f�i�y� f�i�� � f�i�y� f�i�� �=2. The angles �
are �i!1 � �i!6 � 0, �i!2 � �i!3 � 2�=3, �i!4 �

�i!5 � �2�=3, ~�1!i � ~�2!i � �2�=3, ~�3!i �
~�4!i � 0, ~�5!i � ~�6!i � 2�=3. This Hamiltonian has
previously appeared in the context of a block-spin ap-
proach to the Heisenberg KAF [14,15]. The main purpose
of that approach has been to find the origin of the expo-
nentially large number of low-lying singlets that had been
found in numerical studies of the kagomé antiferromagnet
[16,17]. From Refs. [14,15] it also follows that Htrimer

describes the physics of the trimerized KAF in a magnetic
field that drives this system into the plateau region at 1=3 of
the saturation magnetization. We stress that the
Hamiltonian Htrimer to be studied in this Letter describes
a physically feasible situation.
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FIG. 2 (color online). (a) Classical 120� state with right chi-
rality. Dots show s�i�x s�10�x � s�i�y s�10�y , where j ~sj � 1=2 [22];
(b) spin-spin correlations, hs�i�x s�10�x � s�i�y s�10�y i. The upper (lower)
set of values corresponds to kT � 0 (kT � 10�2J=2). In both
plots N � 21 and i � 10 at the central site.
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Let us begin by discussing the classical theory of the
model (1), which describes the large spin limit. In addition
to being translationally invariant, the model of Eq. (1) is
invariant under the point group of order 6, Z6 � Z3Z2,
where the generator of Z3 (order 3) is the combined rota-
tion of the lattice by the angle 4�=3, and of the spins by the
angle 2�=3, while the generator of Z2 (order 2) is the spin
inversion in the x-y plane. We note that our model pos-
sesses no continuous spin rotational symmetry. There exist
three ordered classical states with small unit cells that are
compatible with this point-group symmetry of the model: a
ferromagnetic state, and two 120� Néel type structures
with left [Fig. 1(b)] and right [Fig. 2(a)] chiralities. The
energies per site of these states are Eferro

class � Eright
class �

�3S2J=4 and Eleft
class � 3S2J=2, where the subscripts

‘‘right’’ and ‘‘left’’ refer to chiralities. Hence, for J < 0
the state with left-handed chirality will be the ground state
(GS). For J > 0 the situation is more complex: the states
with right-handed chirality and the ferromagnetic state are
degenerate ground states.

To understand further the classical ground states we
analyzed numerically the 12-spin cell by fixing the direc-
tion of every spin to n�=3 (n � 0; . . . ; 5), and checking the
energies of the resulting 612 configurations. This analysis
has revealed that for J < 0 there are 6 ground states [Z6

symmetry of (1)], each of them exhibiting the left chirality
Néel order. For J > 0 the results are dramatically different:
there are 240 degenerate classical GSs in this case, among
them 6 pure right chirality Néel states and 6 purely ferro-
magnetic states. For an illustration we show in Fig. 3 two
ordered GSs with very large unit cells [Figs. 3(b) and 3(d)]
together with their parent states [Figs. 3(a) and 3(c)]. The
large number of degenerate classical GSs finds its ana-
logue in a large density of low-lying excitations of the
quantum version of Eq. (1).
(d)

(b)

(c)

(a)

FIG. 3 (color online). (a) Right chirality Néel configuration;
(b) localized defect in configuration (a); (c) ferromagnetic con-
figuration; (d) line defect in configuration (c). Open arrows
present spins determined by the boundary conditions for the
12-spin cell. Defects are marked by red dashed contours.
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FIG. 4 (color online). Number of states in an energy interval
above the GS: black (solid), red (dotted), and green (dashed)
lines for N � 24; 21, and 18, respectively.
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To describe the physics of spinless fermions on a tri-
merized optical kagomé lattice at filling 2=3 we need to
consider the model, Eq. (1), for spin 1=2, i.e., in the
extreme quantum limit. Questions to be answered for this
case are the following: (i) Is the GS of the model Eq. (1) an
ordered state, or is it a spin liquid either of type I, i.e., a
state without broken symmetry, with exponentially fast
decaying spin-pair correlations and a gap to the first exci-
tation, or of type II, i.e., a kagomé-like GS again without
broken symmetry, with extremely short ranged correla-
tions, but with a dense spectrum of excitations adjacent
to the GS. (ii) What are the thermal properties of our
system? After all, the model can be realized only at finite,
albeit low temperatures.

To answer the above questions we have performed exact
diagonalization of the Hamiltonian (1) for N �
12; 15; 18; 21, and 24 spins using the ARPACK routines
[18]. To simplify the calculations, we block diagonalized
the Hamiltonian (1) by exploiting its translational symme-
tries, thereby reducing the dimensions of the matrices that
had to be diagonalized from 2N � 2N to � 2N=N � 2N=N.
Despite all these efforts, studies of larger systems require
the use of massive computer resources. Fortunately, the
results for 21 and 24 spins show qualitative and quantita-
tive resemblance, and we regard them as representative for
larger systems.

Our findings are presented in Figs. 2(b) and 4 and
Tables I and II. For J > 0, in contrast to the classical result,
the ground state exhibits the 120� Néel order with right
chirality [19]. This is illustrated in Fig. 2(b), where the
TABLE I. Planar spin-spin correlations for J > 0 as a function
of distance 1; . . . ; 3 in lattice units.

1
���
3

p
2

���
7

p
3

120� �0:125 0.25 �0:125 �0:125 0.25
N � 24 �0:096 0.162 �0:083 �0:080 0.156
N � 21 �0:085 0.135 �0:071 �0:067
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planar spin-spin correlations are presented. Direct com-
parison with the correlations of the classical state,
Fig. 2(a), shows that the exact quantum correlations,
although smaller, have the same order of magnitude and
sign as the classical ones. Especially, the relative values of
correlations compare nicely to the classical result: Table I
summarizes the results for N � 21 and N � 24.
Amazingly, the 120� Néel order survives at finite tempera-
tures, as is indicated by the results obtained for kT �
10�2J=2; see Fig. 2(b). At such temperatures about 800
low-energy eigenstates contribute to the correlations. For
smaller systems, N < 21 (J > 0), finite size effects affect
the spin correlations strongly. Nevertheless, the ground
state energy per spin can be reliably extracted from the
data for N � 12, resulting in �0:2175J� 0:0755J=N.

The selection of a GS with 120� planar Néel order from
the large manifold of classical GSs by quantum effects
implies the breaking of the translational and of the point
group of our model Eq. (1), but there is no continuous
symmetry that the ordered GS could break. Therefore, the
standard expectation would be that the excitations have a
gap of the order of J. Instead, we find that the system has an
exceptionally large number of low-energy excitations (see
Fig. 4). For instance, for N � 21 in the energy interval
0:1J=2 there are about 800 excited states. Most of them
support the spin order of the GS so that this order persists at
finite temperatures.

The analysis of the results for different N’s are compat-
ible with an exponential increase of the number of low-
energy states with the system size N similarly as in the case
of the S � 1=2 KAF [16,17]. For the KAF Mila has been
able to explain this high density of low-energy states by
associating them approximately with dimer coverings of an
effective triangular lattice with uncorrelated products of
nearest-neighbor pair states [15]. His method fails here,
because the low-lying states of our model must certainly be
highly correlated. On account of the breaking of the dis-
crete symmetries of our model by the Néel order, one
expects the ground state of the infinite system to be sixfold
degenerate. For finite systems this degeneracy is lifted.
Nevertheless, we expect to find six low-lying states in the
gap below the lowest excited state. In view of this scenario,
the inspection of the lower panel of Fig. 4 suggests that the
gap, if any, is smaller than 10�2J=2. The appearance of this
very small energy scale is completely unexpected and
puzzling. Obviously, the answer to the questions (i) and
(ii) above is that the GS is ordered and that the order
TABLE II. Planar spin-spin correlations for J < 0 as a func-
tion of distance 1; . . . ;

���
7

p
in lattice units.

1
���
3

p
2

���
7

p

120� �0:125 0.25 �0:125 �0:125
N � 21 �0:134 0.237 �0:117 �0:116
N � 12 �0:137 0.251 �0:125
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survives at low T. The smallness of the gap and the large
density of low-energy states, however, resemble very much
the behavior of a quantum spin liquid of type II. For these
reasons we propose to term our system a quantum spin-
liquid crystal. We note, in this context, that the specific
heat of the N � 21 system exhibits a peak at kT � 7�
10�3J=2.

The above results for J > 0 contrast dramatically with
those for J < 0, summarized in Table II. In the latter case
we deal with the standard quantum antiferromagnet with
120� Néel order and left chirality [19] [Fig. 1(b)]. The
spectrum is gapped, and the classical spin-spin correlations
approximate the quantum correlations remarkably well.
The gap is of the order jJj=2 in this case (N �
12; 18; 21), meaning that there are at most a few states
with energies substantially below jJj=2 for J < 0, as op-
posed to the huge number for J > 0 (Fig. 4).

The observation of physics described in this Letter
requires achieving low, but not unrealistic T ’ 10 to
100 nK (cf. Ref. [13]). In experiments N could vary from
’ 20 to ’ 1000. The low-energy states may be prepared by
employing adiabatic changes of the degree of trimerization
of the lattice. For instance, one can start with a completely
trimerized lattice; the filling � � 2=3 may be achieved
then by starting with � � 1, and eliminating 1 atom per
trimer using, for instance, laser excitations. One can then
increase t and U slowly, on the time scale smaller than the
final 1=J ( ’ seconds). Alternatively, one could start with
� ’ 2=3 in the moderately trimerized regime. As in
Ref. [6], the inhomogeneity of the lattice due to the trap-
ping potential, would then allow one to achieve the Mott
state with � � 2=3 per trimer in the center of the trap.
Nearly perfect 2=3 filling can be achieved by loading a
Bose-Einstein condensate of molecules formed by 2 fermi-
ons into a triangular lattice, generating an MI state, adia-
batically transforming the lattice to a trimerized kagomé
one, ‘‘dissociating’’ the molecules by changing the scat-
tering length to negative values, and by finally optically
pumping the atoms into a single internal state. Preparing
� � 2=3 might involve undesired heating (due to optical
pumping), which can be overcome by using laser, or pho-
non cooling afterwards (cf. [20]). Note that the imperfec-
tions of � can be described by a ‘‘t-J’’ kind of model, and
are of interest themselves.

After preparation it should then be possible to measure
the energy of the system simply by opening the lattice; by
repeated measurement of the energy E�T� at (definite)
finite temperatures one would get in this way an access
to the density of modes, i.e., could compare the results with
Fig. 4. From such measurements one could infer about the
existence of the gap Egap, since if Egap is large enough,
E�T� becomes T independent for kT � Egap. Various other
correlations could be measured as proposed in Ref. [21]. In
order to measure planar spin correlations, one has, how-
ever, to lift the degeneracy of the f
 modes, e.g., by
06040
slightly modifying the intensity of one of the superlattices
forming the trimerized lattice. This should be done on a
time scale faster than the characteristic time scales of other
interactions, so that the state of the system would not
change during the measurement. In such a case one can
use far off resonant Raman scattering (or scattering of
matter waves) to measure the dynamic structure factor,
proportional to the spatiotemporal Fourier transform of
the density-density correlations. At frequencies close to
the Raman resonance between the f
 modes, only f� �
f� transitions contribute to the signal, and hence such
measurement yields the desired information about the
correlations hf�i�y� f�i�� f�j�y� f�j�� i and the spin correlations of
Fig. 2.

A. H. is indebted to D. C. Cabra and P. Pujol for collabo-
ration related to the present work. We acknowledge support
from the Deutsche Forschungsgemeinschaft (SFB 407,
SPP1116, 436 POL), ESF Programme QUDEDIS, and
the Alexander von Humboldt Foundation.
3-4
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