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Asymmetric Two-Component Fermion Systems in Strong Coupling
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We study the phase structure of a dilute two-component Fermi system with attractive interactions as a
function of the coupling and a finite number asymmetry or polarization. In weak coupling, a number
asymmetry results in phase separation. A mixed phase containing symmetric superfluid matter and an
asymmetric normal phase is favored. For strong coupling we show that the stress on the superfluid phase to
accommodate a number asymmetry increases. Near the infinite-scattering length, we calculate the single-
particle excitation spectrum and the ground-state energy. A picture of weakly interacting quasiparticles
emerges for modest polarizations. In this regime a homogeneous phase with a finite population of
quasiparticle states characterized by a gapless spectrum is favored over the phase separated state. These
states may be realized in cold atom experiments.
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Recent experiments on cooled Fermi atoms [1–4] and
theoretical developments in dense QCD [5] have moti-
vated renewed theoretical interest in Fermion superfluids.
In Fermi systems it is well known that attractive inter-
actions destabilize the Fermi surface. This instability is
resolved by the BCS mechanism characterized by pairing
between spin-up and spin-down particles with opposite
momenta on the Fermi surface. The system exhibits super-
fluid properties and has a gap in the excitation spectrum.
Measurements have been performed probing the equa-
tion of state (EOS) [2] and the pairing gap [3,4] in the
strongly interacting regime. Quantum Monte Carlo (QMC)
methods have also been employed to examine these prop-
erties [6–9].

These studies have primarily addressed the unpolarized
system. In contrast, the ground-state properties of an asym-
metric two-component system remain unclear as several
competing states have been proposed. These include: a
gapless superfluid [10–14], a mixed phase consisting of
BCS and normal components [15], and the Larkin,
Ovchinnikov, Ferrel, and Fulde (LOFF) phase where the
order parameter acquires a spatial variation [16,17] which,
in three dimensions, may manifest as the crystalline state
[18]. The competition between these states is especially
relevant to understanding the phase structure of dense
quark matter [5]. In this Letter we address several issues
relating to the ground state of an asymmetric two-
component Fermi system in the strong-coupling regime.
Using both mean-field theory and QMC we find that in
strong coupling and at finite polarization the stress on the
BCS state to accommodate the number asymmetry in-
creases. In the intriguing strong-coupling regime near
kFa � 1, a superfluid state with nontrivial gapless excita-
tions may be favored. We also find that these quasiparticles
are weakly interacting.

Two-component Fermi system.—We consider a system
consisting of nonrelativistic spin-up and spin-down
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Fermions at finite polarization. A short-range potential
(range range � interparticle distance) between spin-up
and spin-down particles characterizes the interaction. The
interaction between spin-up particles (or spin-down par-
ticles) is considered to be negligible compared to the
interaction between up and down spins. We study both
weak coupling and strong-coupling limits to explore the
phase structure from the BCS-like regime characterized by
pairing at the Fermi surface to the Bose Einstein conden-
sate regime characterized by bound bosonic states.

The Hamiltonian (grand canonical) is given by
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where g is the effective four-fermion interaction whose
strength at low energy is determined by the two-body
scattering length a. For the two-component system, the
spin-up and spin-down chemical potential may be written
as �" � �� �� and �# � �� ��, respectively. The
density n � n" � n# determines � and the polarization
density �n � n" � n# determines ��. In trapped atom
experiments this regime can be accessed by adjusting the
population of the two species.

Initially, we consider a Fermi system in the ‘‘universal’’
regime characterized by an infinite-scattering length.
When a � 1, the interaction does not present a dimen-
sionful scale. Consequently, the energy density, pressure,
and chemical potential of the unpolarized system are re-
lated to that of the Fermi gas (FG) by the relation �	a �
1
 � ��FG, P	a � 1
 � �PFG, and � � �k2F=2m, re-
spectively. Quantum Monte Carlo studies in small systems
with 12–20 particles have determined this numerical co-
efficient to be � � 0:44	2
 [7]. The system also exhibits a
gap in the excitation spectrum; numerical studies indicate
that the gap � � 0:95	5
EFG � �� with � � 1:4. Below
we present new calculations for larger system sizes, which
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FIG. 1 (color online). Variation of ��=� with increasing
coupling.
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are useful to more fully explore the dispersion of the
single-particle excitations. For these larger systems we
find � � 0:42	1
 and � � 0:84	5
EFG. We note that the
value for � is in agreement with experimental studies
described in Ref. [2].

Our primary interest here is the spin-polarized system.
Earlier work by Bedaque, Caldas, and Rupak based on
BCS mean-field theory showed that a finite polarization
would lead to phase separation [15]. A heterogeneous
mixed phase consisting of an unpolarized superfluid state
coexisting with a partially polarized Fermi gas state was
shown to have lower free energy than the homogeneous
gapless superfluid phase (also called the breached-pair
phase) suggested earlier by Liu and Wilczek [12]. More
recently, Forbes, Gubankova, Liu, and Wilczek [19] have
shown that the this phase may be stabilized by finite-range
interactions and different masses for the two species. Here,
though, we consider the equal mass case with short-range
interactions, examining the phase structure at stronger
coupling.

Normal-superfluid mixed phase.—Polarizing the super-
fluid state is disfavored due to the presence of a gap in its
excitation spectrum A heterogeneous state containing nor-
mal and superfluid phases provides an alternate route to
accommodate a finite polarization. Here the excess spin-up
particles could reside in the normal phase.

Phase coexistence is possible between states separated
by a first order transition if at fixed chemical potential they
can have the same pressure. Hence we require

PSuperfluid	�; ��
 � PNormal	�; ��
: (1)

Pressure equilibrium uniquely determines �� for a given
�. We emphasize that at fixed �, �� in the mixed phase
does not change with polarization—it is driven to lie
exactly at the first order transition point satisfying
Eq. (1). An increase in net polarization is accommodated
by an increase in the volume fraction of the normal phase.

We observe that �� is the energy required to introduce a
spin-up particle into the normal component of the mixed
phase and � is the corresponding energy in the superfluid
component (where the energy is measured with respect to
the chemical potential �). In the weak coupling BCS
regime, the mixed phase is characterized by ��=� �

1=
���
2

p
and the BCS state remains unpolarized. When �� 

� the BCS state will acquire a finite polarization resulting
in gapless excitations in its spectrum. Otherwise, a finite
polarization will result in phase separation [15,20]. Thus,
at infinitesimal polarization, ���� is the energy differ-
ence per unit polarization between the homogeneous gap-
less phase and the mixed state. These observations
motivate us to examine how the ratio ��=� changes
with coupling strength.

We first analyze the situation at kFa � 1. Using the
EOS results of Ref. [7] and conditions of Gibbs equilib-
rium [Eq. (1)] we find that the ratio
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Substituting the QMC results for � and �, we find that
��=� � 1:00	5
. This suggests that the BCS state is close
to the polarization threshold; and that by tuning the cou-
pling strength cold-atom experiments in traps containing
two-Fermion species should be able to explore the large
��=� regime. Further, we find that ��  �—indicating
that the polarization in the normal phase is maximal. It is
intriguing that we find � ’ �� at kFa � 1.

The gap increases with coupling but �� increases at a
faster rate. The increase in �� is driven by the pressure
equilibrium condition. This trend can be demonstrated by
using mean-field theory in the weak coupling regime where
�	kFa
 � 8� exp��2� 	�=2

���
2

p
kFa
�. Earlier studies of

the mixed phase ignored the leading order kFa corrections
to the pressure and chemical potential [15]. However,
including these corrections is straightforward [21]. We
find the pressure in the normal and BCS state is given by
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k5F"

30�2m
�

k5F#
30�2m

�
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3
F#; (3)
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15�2m
�
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respectively, where P� � mkF�
2=	4�2
 is the pairing

contribution to the pressure. The chemical potentials also
receive corrections at order kFa. In the normal phase
�"	#
 � k2F"	#
=2m� 	4�a=m
k3F#	"
=	6�

2
.
Gibbs equilibrium condition determines the variation of

�� as a function of 1=kFa at fixed �. While we expect the
mean-field result to be valid only for small coupling, the
results which are shown in Fig. 1 show the expected
trend—an increase in ��=� with increasing coupling.
The QMC result at the universal point kFa � 1 confirms
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FIG. 2 (color online). The quasiparticle spectrum above the
superfluid phase at kFa � 1. For reference, the quasiparticle
spectrum in BCS theory for kFa � 1 is also shown.
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FIG. 3 (color online). Ground-state energy vs polarization at
fixed density and a � 1.

PRL 95, 060401 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
5 AUGUST 2005
this increase. The behavior in the extreme BEC limit is also
shown. In this region, we may use mean-field theory to
calculate the self energy of a spin-up Fermion in the BEC
phase. This is given by �BEC � 4�aBFnB= ~m, where aBF ’
1:2a is the Fermion-Boson scattering length [22], nB is the
Boson density and ~m is the reduced mass of the Fermion-
Boson system. The Boson-Boson scattering length is also
known and is given by aBB ’ 0:6a [22]. We use this to
calculate the pressure of the BEC at leading order in the
n1=3B aBB expansion [21]. Pressure and chemical equilib-
rium then uniquely determine the chemical potential of
spin-up Fermions in the Fermi gas phase. In agreement
with earlier work by Viverit, Pethick, and Smith [23], we
find that the homogeneous BEC phase easily accommo-
dates a finite polarization in the dilute regime—as evi-
denced by ��=�BEC � 1.

Quasiparticle dispersion and polarized superfluid
state.—In addition to calculating the paired ground-state
energy and the superfluid gap, we have performed QMC
calculations of the homogeneous superfluid phase to ex-
amine the quasiparticle dispersion as a function of momen-
tum. In addition, we have calculated the ground-state
energy of systems at finite polarization to examine the
interaction between these quasiparticles and determine if
the gapless phase can support a macroscopic polarization.
The methods used are identical to those employed earlier
and the same (finite-range) cosh potential was used [6,7].
As before, we expect the small but finite-range of the
potential to have a small effect upon the ground-state
energy and the gap. Here we employ somewhat larger
system sizes, however, ranging from 54–66 particles rather
than the earlier studies from 12 to 20 particles. The larger
system sizes allow for a somewhat finer momentum grid
which is useful for examining the dispersion.

For the dispersion calculations, we place an unpaired
spin in a state of definite momenta k � 	nx; ny; nz
2�=L,
where L is the (cubic) box length and the ni are integers
describing the momenta in each coordinate. The BCS plus
unpaired particle wave function can be calculated effi-
ciently as a determinant [6]. As for the unpolarized system,
we employ the fixed-node algorithm to avoid the fermion
sign problem. This yields an upper bound to the energy for
this system, the parameters in the BCS pair function �	rij

are (approximately) optimized to yield the best fixed-node
energy. We include Jastrow correlations between antipar-
allel and parallel spins in the trial wave function to mini-
mize the statistical errors [9]. These do not affect the
energy, however, as they do not change the nodal surfaces
where �T � 0.

The quasiparticle spectrum at kFa � 1 is displayed in
Fig. 2. The BCS prediction at kFa � 1 is shown for
comparison. The QMC points are calculated by computing
Ek	N � 1
 � �E0	N
 � E0	N � 2
�=2 at constant density,
where Ek	N � 1
 is the energy of the state of momentum k
with 1 unpaired and N paired particles. The E0 are the
ground states of the N and N � 2 particle systems.
06040
Note that the minimum is at a momentum significantly
less than the Fermi momentum. For larger coupling, the
minimum in the dispersion will continue to trend towards
lower momenta. This is apparent in the figure from the two
sets of QMC results. From the QMC calculations we ex-
tract � � 0:42	1
 and a gap of 0:84	4
EFG, or � � 1:2,
somewhat smaller than earlier results.

In order to understand if the BCS phase can support a
finite polarization, it is important to also study the inter-
action between the (polarized) quasiparticles. We have
used QMC techniques to search for the ground-state energy
as a function of polarization. The lowest variational energy
in each case is found by filling the states at the minima of
the quasiparticle spectra.

The results are shown in Fig. 3. These results demon-
strate that the quasiparticles at small polarization are nearly
noninteracting. This would be expected at small polariza-
tions since the pair size is expected to be of the order of the
interparticle separation. The solid points are the QMC
1-3
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calculations with finite polarization. The integers next to
these solid points indicate the momentum shells n2, where
k2 � n2	2�=L
2 � 	n2x � n2y � n2z
	2�=L
2, filled in the
trial wave function. Calculations were performed for
66 particles at various polarizations.

The open symbols represent the sum of single-particle
energies obtained from the single-particle dispersion cal-
culations of Fig. 2. At small polarizations this is nearly
degenerate with the full calculation. The solid line in the
figure is the energy of a phase separated unpolarized paired
phase and a fully polarized Fermi gas.

The calculations indicate that the mixed and homoge-
neous phases are essentially degenerate at kFa � 1. Our
calculations reproduce momentum distributions similar to
those proposed for the gapless SC state, the states near the
minimum of the dispersion are nearly fully occupied for
one species, and nearly unoccupied for the other.

For larger couplings (kFa > 0) at small polarizations, a
transition to the homogeneous phase is expected to occur at
some point from examining the behavior at very large
couplings. Here the system can be thought of as a dilute
mixed Fermi-Bose system where the bosons are tightly
bound pairs of Fermions. The zero-temperature phase dia-
gram of such mixtures has been investigated by Viverit,
Pethick, and Smith [23]. They find that at small fermion
densities the system is homogeneous, while at larger den-
sities it phase separates into either a pure fermion plus
mixed or pure fermion plus pure boson phase.

The results shown in Fig. 3 are qualitatively similar.
Beyond a certain value of polarization, around 0.3 in the
figure, the homogeneous system is clearly higher in energy
than a phase separated state consisting of an unpolarized
BCS plus fully polarized fermions. In this regime it appears
that the BCS component would continue to support a
smaller polarization.

Conclusions.—From our calculations it appears that at
couplings near and beyond kFa � 1 a homogeneous su-
perfluid state with finite polarization and nontrivial gapless
excitations may be accessible experimentally. We also find
that at low polarization, the polarization is carried by
quasiparticles that are nearly noninteracting and occupy
momenta below kF. In cold-atom experiments we expect
the trap potential to favor the phase separated state, while
finite-range effects, which are expected to suppress the
gap, and surface energy cost may help stabilize the homo-
geneous phase relative to the phase separated state. A naive
interpretation of our results would indicate that a gapless
superfluid exists only at very strong coupling where
�=� * 1. However, in more complex systems such as
dense quark matter, charge neutrality imposed by long-
range forces plays an important role in this phase competi-
tion [13,14,24]. We also note that we have not analyzed
other exotic possibilities such as the LOFF state which may
06040
be relevant. We are planning on examining such possibil-
ities in future calculations, and also examining systems at
large polarizations.
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