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Finite-Temperature Quasicontinuum: Molecular Dynamics without All the Atoms
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Using a combination of statistical mechanics and finite-element interpolation, we develop a coarse-
grained (CQG) alternative to molecular dynamics (MD) for crystalline solids at constant temperature. The
new approach is significantly more efficient than MD and generalizes earlier work on the quasicontinuum
method. The method is validated by recovering equilibrium properties of single crystal Ni as a function of
temperature. CG dynamical simulations of nanoindentation reveal a strong dependence on temperature of
the critical stress to nucleate dislocations under the indenter.
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Many processes involving the physics and chemistry of
materials result from microscopic interactions between the
constituent atoms. As a result, molecular dynamics (MD)
simulations pervade the literature of a variety of materials-
related disciplines. However, large-scale atomistic simula-
tions remain computationally demanding, resulting in the
continued effort to seek alternatives which permit the ex-
amination of larger spatial domains or longer time scales.

An important step in this direction is a variety of multi-
scale methods which combine atomistic simulation with
coarse-graining schemes (see [1] for a recent review).
These methods exploit the fact that in many cases the
critical dynamics may involve a relatively small subset of
the entire set of atoms with the remainder of the atoms
serving primarily to guarantee appropriate boundary con-
ditions for the region of interest. One example is the
quasicontinuum (QC) method, a zero-temperature energy
minimization technique, which significantly reduces the
total number of degrees of freedom that must be considered
when simulating the deformation of crystalline solids [2,3].
In this method an approximation to the total potential
energy is obtained by making use of finite-element con-
straints to remove atoms where the deformation field varies
slowly on the scale of the lattice parameter. An attractive
feature of this approach is its ‘“seamlessness’ in that the
same underlying atomistic model is used in the energy
calculations in both the coarse-grained (CG) and fully
atomistic regions.

The aim of this Letter is to extend the QC method to treat
the dynamics of systems at constant temperature. Our
procedure is based on the concept of a potential of mean
force (PMF), which was first introduced by Kirkwood in
1935 [4]. In principle, this approach enables the calculation
of a variety of equilibrium and nonequilibrium properties
of large systems using only a limited number of degrees of
freedom. In practice, however, calculating the PMF di-
rectly from a molecular dynamics simulation is often com-
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putationally demanding. This drawback can either make
the PMF approach less efficient than the full atomistic
calculation it is seeking to replace, or limits its use to linear
coupling terms [5]. In this Letter we propose a method to
substantially expedite the calculation of the PMF by mak-
ing use of finite-element interpolation and the Cauchy-
Born rule [2]. As a result, the PMF can be recalculated at
each time step, capturing in this manner the rich nonline-
arity of the atomistic potential. We assess the validity of the
method by comparing the temperature dependence of the
lattice parameter of the CG system with that obtained from
what we consider to be the “gold standard” for our
method: a fully atomistic model described by the same
interatomic potentials. In addition, we have developed the
method to a degree that permits the study of general 2D
deformation problems on 3D crystals with out-of-plane
periodic boundary conditions. We demonstrate this capa-
bility by studying the temperature dependence of disloca-
tion nucleation during nanoindentation.

Consider a system of N atoms whose positions are
denoted by {q}. We assume the potential energy of the
system V({q}) can be written as the sum of the energy
E;({q}) of each individual atom i. As shown in Fig. 1, we
split the atom population (N atoms) between so-called
representative atoms representative atoms, characterized
by positions {q"}, which are the atoms that we will consider
in our simulations and constrained atoms with coordinates
{q‘}. We define N, as the number of representative atoms
and we will refer to this system as the CG system.

Following [4,6], we define the CG potential energy as
the PMF for the constrained degrees of freedom,

1 e
where 8 = 1/kgT. This particular choice guarantees that

the ensemble-average of any observable A (designated as
(A)) that depends only on the positions of the representative
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FIG. 1. We split the atom population between representative
atoms (large circles on the figure) and constrained atoms (small
gray circles). The average positions of the latter are estimated
from the position of the former using finite-element interpola-
tion. Among the representative atoms, we make a distinction
between nonlocal atoms (black circles) whose energy only
depends on representative atoms (as shown by the dashed circle
whose radius equals the cutoff distance of the interatomic
potential), and the local atoms (white circles) which interact
with constrained atoms.

atoms {q'} is equal to the ensemble average that would be
found for this observable in a full atomistic and canonical
system at equilibrium. That is,

(A{a"D)ce = AdaDn, v.r = Ad Dnvr ()

Equation (2) provides a clear and reasonable objective for
the CG methodology.

The Hamiltonian of the CG system is constructed as
follows
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where p! = m}q; are the momenta of the representative
atoms and m! are their effective masses. In most dynamical
CG approaches the effective masses are computed using
either a weighted mass matrix approach [5] or a lumped-
mass approach [7]. Here we propose a more rigorous
approach whereby the effective masses are obtained from
two conditions: (1) that the total mass of the CG system
equals that of the full-atom system, > ,m; = Nm; and
(2) that both systems have the same momentum free energy
F
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where h, is an arbitrary constant with dimensions of
momentum [8]. These requirements are satisfied identi-

cally if h, =.22wm/af and the effective masses are
taken to be m! = a"~'m, where n; is the number of atoms
represented by representative atom i (this is obtained from
a Voronoi tesselation of the CG system [2]) and « is
obtained from the solution of the equation E?ﬁla”"l =
N. For the case of uniform coarse graining, where each
representative atom represents n = N/N, atoms, the so-
lution is a = (N/N,)"/=1 and the effective masses
are m! = (N/N")m = nm. This corresponds to a simple

i=1

lumped-mass approach. However, a lumped-mass ap-
proach is inappropriate for nonuniform coarse graining.
For example, for a CG system comprised of 4 representa-
tive atoms representing, respectively, n; = 1, 2, 3, and 4
atoms, the effective masses are m] = {1, 1.661, 2.758,
4.581}m. These are clearly different from the lumped-
mass approach which simply gives m] = n;m.

In order to construct a dynamics for the representative
atoms which allows for the simulation of systems in con-
tact with a thermal reservoir, we adopt the Nosé-Poincaré
thermostat [9,10], though now applied to the set of repre-
sentative atoms rather than all of the atoms. This approach
defines a virtual CG microcanonical system, which ensures
that ensemble averages of this system are exactly equal to
averages of the original canonical system, thus preserving
Eq. (2). Equations of motions can now be derived from the
Hamiltonian of the microcanonical system. These equa-
tions can be integrated in turn using a time-reversible
symplectic algorithm [11]. It should be noted that the
resulting equations of motion for atoms in fully refined
regions are identical to those of a full atomistic simulation.

The description given above is formally complete; how-
ever, we must still address the questions of how to effi-
ciently implement these ideas, and how to expedite the
calculation of the PMF Vs({q"}, B). Here we appeal to the
QC formalism [2] to describe the configuration of the
system. We first lay down a mesh between the representa-
tive atoms and decompose them into two sets as shown in
Fig. 1. The nonlocal atoms (NL) are the atoms located in
fully refined regions which do not interact with any con-
strained atoms. Their individual contribution E;({q’}) to
the CG potential can be calculated exactly based on the
positions of the surrounding representative atoms as one
would do in regular MD. On the other hand, local atoms
interact with the constrained atoms in their vicinity. Taking
advantage of the smoothness of the strain field in the CG
regions, we use finite-element interpolation to express the
thermally averaged positions of the constrained atoms as a
function of the position of the representative atoms as
q5) = NS, 9], where S;; are finite-element shape func-
tions. In our implementation we use three-noded triangular
elements with linear interpolation functions [12]. For com-
putational efficiency, we also appeal to the local harmonic
approximation suggested by LeSar [13,14], which has
proven to be accurate for moderately strained crystals up
to half the melting temperature. Using this approximation,
the CG potential energy simplifies to

N
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where E;({q"}) and ||D({q"})|| are, respectively, the energy
and the determinant of the dynamical matrix of atom i.
Finally we can take further advantage of the smoothness of
the strain field in the CG regions and invoke the Cauchy-
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Born rule [2]. According to this approximation, all atoms
in a single element in the CG region are assumed to all have
an identical uniform environment characterized by the
deformation gradient F,, which is calculated from the
displacements of the three representative atoms {q’} de-
limiting the element. The individual contributions of these
atoms in the previous equation can then be replaced by a
sum over elements:

Veaa') B) = Z E({q'})
iENL
4 Z[ngECB(Fe) + ;—ﬁ 1“7”323/(2;2”}

(6)

where NL is the set of nonlocal atoms, and n, and n¢ are,
respectively, the total number of atoms and the number of
constrained atoms in the element e. E-g(F,) and
|IDcg(F,)|l are, respectively, the potential energy and the
determinant of the dynamical matrix of an atom embedded
in an infinite perfect crystal subject to a uniform deforma-
tion gradient F,. The CG potential energy in Eq. (6) can be
computed quickly and efficiently. It provides an adequate
approximation for the PMF formally defined in Eq. (1) for
temperatures up to about half the melting temperature. The
essence of our model, then, is to represent the contributions
of the thermal vibrations of the unrepresented atoms by
treating them as harmonic oscillators, but where the en-
tropy depends on the instantaneous local atomic configu-
ration characterized by F,. For this reason the model is
able to approximately capture phenomena in the CG region
such as thermal expansion. This feature of the model is a
consequence of the nonlinear finite deformation founda-
tion of QC, which is lacking in most other approaches
which assume small strain linear elasticity.

This model was implemented in the original version of
the QC code [15]. The simulations are essentially 2D with
periodic boundary conditions in the out-of-plane direction
in order to mimic a 3D system. In Fig. 2 we compare the
equilibrium lattice parameter of a defect-free single crystal
obtained in the local regions with regular MD. The QC
method gives similar results to those found using MD with
a difference ranging from 0% at 0 K to 0.5% at 1000 K,
providing a quantitative assessment of the degree to which
Eq. (2) is satisfied within our approximation of the PMF.
The degradation of the results with increasing temperature
is not surprising as anharmonic effects also increase [14].
The discrepancy between the two models is small relative
to the standard deviation of atoms from their equilibrium
positions (measured in the MD simulation) which range
from 1.5% of the lattice parameter at 200 K to 5% at
1000 K.

Next we turn to a more complex problem and investigate
the temperature dependence of the threshold for disloca-
tion nucleation during nanoindentation. This is an excel-
lent application involving at once localized effects under
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FIG. 2. Lattice parameter of nickel as a function of tempera-
ture using an embedded atom model (EAM) potential [22]. The
melting temperature of this potential is 1478 K [23]. The QC
calculation involved a cell of dimensions 200 nm X 100 nm
with a regular mesh containing 50 nodes. The lattice parameter
was calculated as an average over the dimensions of the cell.

the indenter and long range effects due to elastic deforma-
tion fields. One of the features of nanoindentation experi-
ments that make them especially appealing for multiscale
simulations is that the experimental systems remain larger
than the biggest cells that can be handled by MD creating a
possible source of misinterpretation about the onset of
dislocation activity [16]. Previous atomistic simulations
have mostly been limited to zero temperature or small
system sizes [17-21]. The use of the QC method is there-
fore compelling since it leads to a reduction in computa-
tional overhead that may permit in the future the direct
simulation of experimental geometries at finite tempera-
ture. In the present work, a single crystal of Ni with
dimensions 200 nm X 100 nm was indented by a cylindri-
cal indenter of radius 7 nm at temperatures ranging from
0 K to 400 K (see Fig. 3). The indentation direction
coincides with the preferred slip direction [110], the hori-
zontal direction is [111], and the third direction is [112].
The mesh used in this simulation was fully refined beneath
the indenter to allow dislocation nucleation. It contained
only 3000 nodes (compared with 790 000 atoms that would
be required for full MD), thus providing considerable
speed-up. The velocity of the indenter was chosen to be
5 m/s. Nanoindentation simulations were conducted after
a 200 ps equilibration time over a period of about 400 ps
with a time step of 1 fs.

The loading curves are presented in Fig. 4. Prior to
dislocation nucleation, the curves follow an elastic loading
path which is modified by the thermal dependence of the
elastic coefficients. As is seen in Fig. 4, the onset of
plasticity (i.e., dislocation nucleation) is affected by the
temperature. Analysis shows that nucleation occurs under
the indenter in the bulk in two stages as presented in Fig. 3.
A more comprehensive study will be published elsewhere.
We note that the zero-temperature results recover earlier
results using the QC method in the absence of thermal
effects [18].

In this Letter we have proposed a method for the dy-
namical simulation of crystalline solids at constant tem-
perature. It captures both atomistic mechanisms and long
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FIG. 3. Computational mesh at an indenter displacement of
1.5 nm at 100 K, showing details of the nonlocal, fully atomistic
region under the indenter as a dissociated edge dislocation
nucleates. Elements between the representative atoms are drawn,
rather than the representative atoms at the element vertices, to
accentuate the deformation due to dislocation motion.
Dislocation nucleation occurs in two stages. A first dipole of % X
(112) Shockley partial dislocations (SPD’s) is nucleated under
the surface (1 and 2). SPD 1 propagates into the bulk while SPD
2 reaches the surface, creating a stacking fault between them as
shown by the dashed line. Later a second dipole of SPD’s (3 and
4) is nucleated at the same location as the first dipole. SPD 3
propagates into the bulk to form a dissociated dislocation with
SPD 1. SPD 4 moves to the surface, removing the stacking fault,
and creating a step on the surface by combining with SPD 2. As
temperature increases this mechanism occurs closer to the sur-
face and on planes closer to the midline. The inset shows the
entire initial mesh.

range effects without the computational cost of full atom-
istic simulations. We have shown that thermodynamic
properties are in good agreement with conventional atom-
istic simulations. The ability of this method to investigate
effects of temperature and defects in real structures has
been demonstrated with the example of nanoindentation.
Though these results provide an encouraging first step in
the direction of MD simulations without all the atoms,
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FIG. 4 (color online). Force vs indentation depth curve. The
forces are averaged over a period of 0.5 ps to reduce thermal
noise. The slope decreases with increasing temperature in ac-
cordance with the evolution of elastic coefficients. More inter-
estingly, dislocation nucleation occurs at lower displacements
with increasing temperature.

there are a variety of interesting issues still to be explored
including: how to carry out mesh adaption at finite tem-
peratures, going beyond the local harmonic approximation
used to compute the effective potential, and application to
other problems of interest such as the temperature depen-
dence of fracture.
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