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Solenoids and Plectonemes in Stretched and Twisted Elastomeric Filaments
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We study the behavior of a naturally straight highly extensible elastic filament subjected to large
extensional and twisting strains. We find that two different phases can coexist for a range of parameter
values: the plectoneme and the solenoid. A simple theory based on a neo-Hookean model for the material
of the filament and accounting for the slender geometry suffices to explain these observations, and leads to
a phase diagram that is consistent with observations. Extension and relaxation experiments on these
phases show the presence of large hysteresis loops and sawtoothlike force-displacement curves which are
different for the plectoneme and the solenoid.
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FIG. 1. (a) The experiment consists of clamping a rubber rod
to a rigid support, which is then stretched by hanging a weight W
and is twisted about its axis by rotating a bar attached to the
weight. (b) For small to intermediate values of the twist, the rod
remains straight while its length increases. (c) Beyond a thresh-
old in the twisting strain, the straight configuration loses stability
to a helical form. Depending on the initial extension, we see
(d) the plectonemic phase or (e) the solenoidal phase. For the
solenoidal phase, as the twist is increased still further, the whole
rod is converted to (f) a solenoidal structure, which is then
transformed into (g) tertiary structures that are constituted of
both (h) higher-order solenoidal and (i) plectonemic structures.
In (j) we show our notation and point out the appearance of kinks
at the junction between the straight and solenoidal parts of the
filament.
Filamentous structures arise naturally in molecular and
cellular biology, polymer physics, ropes, braids, textiles,
etc. Long wavelength models for the deformations of these
continua take a deceptively simple form wherein filaments
are assumed to bend and twist but not stretch or shear
transversely. While the assumption of inextensibility and
transverse unshearability is certainly a good one in many
situations, there is a large class of naturally occurring
filaments that are highly extensible: on the molecular scale
in multidomain proteins [1], on the mesoscopic scale in
fibers [2], and on the macroscale in the context of rubber
and gel filaments that deform primarily via shear. Here we
consider the mechanics of a naturally straight, highly ex-
tensible, elastic rod subjected to extensional and torsional
loads, and show that their behavior can be qualitatively
different from that of the extensively studied case of inex-
tensible filaments, due to the presence of a new highly
packed conformation, the solenoidal phase.

Figure 1(a) depicts the schematic of our experiment in
which a soft cylindrical rubber filament of diameter 2a and
length L0 is stretched vertically by clamping one end to a
rigid support and hanging a weight W at the other end. A
horizontal bar attached to the weighted end is used to twist
the rod about its axis by an angle  L, L being the deformed
length. We find that the filament remains straight
[Fig. 1(b)] as long as the twist density  is less than a
critical value. However, even when the filament is straight,
we notice a marked increase in the length as the twist
density increases. This coupling between the shear defor-
mations and the normal extension is the result of large
strain in highly extensible materials, and is known as the
Poynting effect [3]. When  >  c, the rod buckles into a
helical form shown in Fig. 1(b) by switching into one of
two compact, packed structures depending on the nominal
stretch �0 � L=L0. When �0 �O�1� we see the plectone-
mic structure [4] shown in Fig. 1(d) while the preferred
state for large �0 is a tightly packed helix or solenoidal
form. When the initial stretch is large, a further increase in
the twist causes the solenoidal phase to invade the entire
filament [Fig. 1(e)] typically nucleating at a boundary
leading to a secondary structure that is itself filamentlike,
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albeit with very different mechanical and geometrical
properties. On twisting still further, tertiary solenoidal
and plectonemic structures begin to appear as shown in
Fig. 1(g). These knurled structures are the basis for the
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typical appearance of wools and certain textiles [5].
Although related observations have been made earlier
[4,6–8], the experimental and theoretical analysis of the
solenoidal structures and their coexistence with plecto-
nemes is new.

The configuration of the filament is determined by min-
imizing the free energy of the system which is the sum of
the stretching (�S), twisting (�T), and the bending energy
(�B) of the rod and the potential energy (�W and �M) of
the external load. We note that for the straight part of the
filament, the controlling parameters are the extensional
load W and the twist density  . However, for the solenoid
the controlling parameters are the end load W and torque
M, owing to the softness of the intervening twisted filament
which effectively transmits loads (extensional and tor-
sional) rather than displacements. If the subscript s char-
acterizes the part of the rod that is transformed into a
solenoid so that Ls is the length of the solenoidal phase
in the undeformed (reference) configuration, we may write

�S � �C=a2��LsJs � �L0 � Ls�J�; (1)

�T � �C=2a2��Ls�s� � sa�2 � �L0 � Ls��� a�2�; (2)

�B � �BLs=2�s��sin
4�=r2�; (3)

where B � �a4E=4 is the bending rigidity of the rod, and
C � 2B=3 is the twisting rigidity of the rod (assumed to be
incompressible). Equation (1) follows from the mechanical
energy density for an incompressible neo-Hoookean ma-
terial in pure extension [9], with J � ��2 � 2=�� 3�.
Here � is the true stretch which is coupled to the shear
due to twist [3]. In a force controlled experiment as here,
the true stress in the absence of any twist �E=3� ���
1=�0

2� is the same as the stress in the presence of twist
[9] �E=3� ��0 � 1=�2 � � a�2=4�. In terms of the function
f��� � @J=@� � �� 1=�2 we may thus write the true
stretch in terms of the nominal stretch �0, and the twist
strain  as:

f��� � f��0� � � a�2=4: (4)

Equation (2) follows from the twist energy for a helical
filament with helix angle �, radius r [Fig. 1(e)], and total
twist density [10] � s �  s � sin� cos�=r, while Eq. (3) is
the bending energy of the solenoidal helix with curvature
sin2�=r. The potential energy of the dead load W and the
torque M � C are

�W � W�Ls�1� �s cos�� � �L0 � Ls��1� ��� (5)

�M � �M�Ls�s� s � sin�=r� � �L0 � Ls�� �: (6)

The expressions for the energy written above are similar to
those for helical springs [4,10] with the important qualita-
tive difference associated with the finite extensibility of the
rod, an effect at the root of all the new phenomena de-
scribed here. In deriving the above expressions, we have
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used a characterization of the solenoid as a perfect helix of
circular cross section, thus neglecting the effects of self-
contact, and have also neglected the effects of the kinks at
the junction between the solenoidal and the straight part of
the filament where the twist density and the rod diameter
change discontinuously.

Extremizing the total energy �� ; s; �; r� �
�W ��M ��S ��T ��B with respect to  s yields

M � C � C � s; (7)

which implies that the twist density is conserved in the
straight and the helical part of the rod. Similarly, extrem-
izing � with respect to � and r yields

M � C cos� � s �
Bsin3�

r�2s

W �
C � s sin�

r
�
Bsin2� cos�

�r�s�2
:

(8)

Finally, substituting (7) in (8) yields expressions for the
radius of the helix r and the twist density of the helical
solenoid  s in terms of the load W and the helix angle �:

r �

�����
B
W

s
sin�
�s

;  s �

�����
W
B

s �
3�1� cos��

2�s
� �s cos�

�
:

(9)

We thus have six equations (7)–(9) for eight unknowns:W,
M, �, r,  ,  s, �, and �s. We solve these equations by
assuming a value for the dead loadW and the helix angle �
and determine r,  s, and �s. For each W, the range of
allowable � is limited to (0; �m), with the latter limit
corresponding to the case when there is self-contact, which
occurs when the helix pitch P � 2�r= tan�m is equal to
the diameter of the stretched rodD � 2a=

�����
�s

p
. In Fig. 2 we

plot � with respect to � thus calculated for a range of
extensional loads W � 0:6–6:5 N. Since the filament twist
must be in the same direction for both the straight and the
solenoidal parts of the filament, it follows from Eq. (9) that
3�1� cos��=2�s 
 �s cos�. Therefore, we must exclude
the set of values of � for which  s < 0 [11]. In Fig. 2, � 2
�0; �m� for curves 1–4, while for curve 5� 2 �14�; �m�, in
accordance with this constraint.

The solutions depicted in Fig. 2 are stable if all the
eigenvalues of the Hessian matrix @2�

@ai@aj
jak;k�i;j with ai �

�,  s, and r remain positive. For all W, when �<  � 3�

the Hessian matrix is positive definite, signifying that the
straight rod remains straight for small perturbations.
However, for all sets of solutions with �>  , one of the
three eigenvalues is negative, implying that these solutions
are unstable. The dashed lines 1–5 signify that these solu-
tions are saddle points so that a straight filament with
� � 0 becomes unstable for perturbations that are large
enough and transitions suddenly to a solenoidal shape with
� � �m. Experimentally we typically see the appearance
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FIG. 3. Phase diagram. The dimensionless twist density  a
(filled symbols) at which the plectoneme/solenoidal phase arises
are plotted with respect to the initial extension ratio �0 of the
rod. The solid line represents the theoretical transition curves for
 a while the dashed line represents the transition curve for � as
a function of �0 calculated using (4)–(9). The ‘‘circles’’ corre-
spond to filaments of modulus E � 1:3 MPa and diameter 2a �
3:175 mm, the ‘‘triangles’’ correspond to 2a � 6:35 mm, and
the squares correspond to E � 2:6 MPa and 2a � 6:35 mm. The
vertical dashed line separates the plectoneme and the straight
phase, while the solid line separates the straight phase from the
solenoidal phase.

FIG. 2. Equilibrium values of the solenoid angle � [obtained
from (8)] vs the stretch � for different extensional loads W. The
curves 1 to 5 correspond to rubber rod with 2a � 3:75 mm
subjected to W � 0:6, 1.5, 3.0, 4.4, and 6.4 N, respectively.
Curve 6 represents the upper limit of the solenoid angle �m
when the helix pitch P � D the diameter of the stretched
filament. The �m data from experiments are also plotted with
respect to �. Symbols � and � represent rubber rods of elastic
modulus E � 1:3 MPa and diameter 2a � 3:175 and 6.35 mm,
respectively.
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of a number of coils simultaneously due to the strongly
subcritical nature of the transition.

In Fig. 3 we plot the critical twist density (filled sym-
bols) at which a straight filament subjected to the initial
extension ratio �0 transforms either to a plectoneme or to a
helix. When the initial extension is small, �0 < 1:1, corre-
sponding approximately to the case of an inextensible
filament, twisting the straight rod sufficiently results in
the plectonemic phase. However, the solenoidal tightly
coiled helix nucleates when �0 > 1:1. The open symbols
in this figure represent the corresponding experimentally
obtained stretch � of the filament at which this phase
transition occurs. We also plot the theoretical curves of
the critical twist density and the extension ratios as ob-
tained by solving Eqs. (4)–(9) along with the constraint
that the solenoid angle �m is achieved with the helix pitch
P � D. Although P remains slightly larger than D with
P=D � 1:1� 0:1 for the whole range of W, the experi-
ments agree with the simple theory over a range of �.

A consequence of the subcritical transition to the packed
solenoidal structures is that they unwind at a load higher
than that when formed. Indeed we observe this hysteresis if
we first nucleate the solenoidal phase and then stretch the
rod in a displacement-controlled experiment to unwind
them while keeping the total number of turns constant. In
a cyclic experiment, the results of which are shown in
Fig. 4 (curve 2), the solenoidal helices unwind progres-
sively with an increase in extension but they reappear at a
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different value of the extension during relaxation. The size
of the hysteresis loop increases with the initial load W0.
Figure 4 depicts the load-displacement history for different
initial loads, W0 � 0:1–1:0 N. As the displacement � is
increased, curve 2 shows how the tightly packed helical
coils straighten out one by one with the solenoid angle �
jumping from �m to zero with a concomitant sharp drop in
the load. Similarly, when the extension is relaxed, helices
start to appear one by one with sharp increases in the load
associated with the formation of individual coils. The
resulting sawtooth pattern for the W�� curve persists
even after repeated extension-relaxation cycles. An ap-
proximate estimate of the spacing between the peaks can
be deduced from the axial increase in length due to the
unwinding of a single helical pitch �d��1�cos���L
where �L�2�r=sin��2�=�s

�����������
B=W

p
is the contour

length of a pitch. For curve 2, using 2a � 3:75 mm, E �
1:3 MPa,W0 � 2:0 N, and� � 70�, �s � 1:3 we find that
�d � 9:25 mm, consistent with the experimentally ob-
tained mean value of 10:5� 1 mm. The drop in load
during the extension or relaxation of a helical pitch also
depends upon the load W; small W result in a large �d and
thus a more pronounced sawtooth. For comparison, we also
show the graph for a straight untwisted filament (curve 1)
which follows the qualitatively different hysteretic behav-
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FIG. 4. The force-extension response of a rubber filament
during a cycle or loading and unloading displacements (see
triangular ramp). Curve 1 depicts the response of a straight
filament which is simply stretched. Curve 2 represents that for
a filament with a series of solenoids (initial load W0 � 1:0); as
the load increases, the solenoids unwind leading to sawtoothlike
response. Curves 3 represent the response of a single plectoneme
(initial load W0 � 0:5) while curve 4 (W0 � 0:1 N) represents
the response of a multiple-plectoneme filament; here the saw-
toothlike structure corresponds to the unwinding of the loop at
the end of the plectoneme that is similar to a solenoidal structure
when stretched. Observe the marked difference between the
unloading curves for the solenoidal filament (2) and the plecto-
neme (3) and (4); the latter are smooth while the former show a
sawtoothlike response. All the experiments were carried out
keeping the total twist constant, and with filaments of diameter
2a � 3:75 mm and modulus E � 1:3 MPa.
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ior characteristic of elastomeric materials, in contrast with
the hysteresis induced by the complex geometry of the
helix/solenoidal phases that yields curve 2.

The response of a single plectonemic structure is pre-
sented in curve 3 of Fig. 4. We see that the individual
helices of the plectoneme unwind continuously until the
very last one when a sharp drop in the force is observed.
While the continuous change in load corresponds to super-
critical growth of the plectoneme, the last drop in the load
arises because the loop at the end of a plectoneme is similar
to a solenoidal coil. During relaxation the plectoneme does
not reappear leading to a single solenoidal coil; this is
consistent with the subcritical nature of plectoneme for-
mation in extensible filaments in a load controlled situation
like here. Finally, if multiple plectonemes are artificially
introduced while twisting the straight rod, the force-
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displacement curve is smooth initially until the last part
of each plectoneme, a solenoidlike structure—this leads to
the sawtooth pattern seen in curve 4, but during relaxation
there are no jumps, as expected. Thus we see that the
extension-relaxation cycles of the plectoneme and solenoi-
dal structures result in distinctly different load-
displacement diagrams and could be used as a signature
of the secondary and tertiary structure of twisted filaments;
i.e., they are essentially dictated by geometrical structures
rather than material properties.

The jagged load-displacement curves in Fig. 4 are remi-
niscent of similar patterns observed in stretching experi-
ments on single molecules and on natural fibers. However,
there is a qualitative difference between our macroscopic
experiments and those on the molecular scale—while for
proteins the sawtoothlike response corresponds to unfold-
ing of individual domains held together by short range
forces, in the macroscopic experiment, the response hap-
pens due to unwinding of plectonemic or helical coils
formed under extensional and torsional end loads, and is
thus due more to geometry. This hysteretic behavior forms
the basis for the extensibility of matted and knotted wool
and other fibrous materials, a subject worthy of further
study.
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