
PRL 95, 056602 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
29 JULY 2005
Scaling and Decoherence in the Nonequilibrium Kondo Model
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We study the Kondo effect in quantum dots in an out-of-equilibrium state due to an applied dc-voltage
bias. Using the method of infinitesimal unitary transformations (‘‘flow equations’’), we develop a
perturbative scaling picture that naturally contains both equilibrium coherence and nonequilibrium
decoherence effects. This framework allows one to study the competition between Kondo effect and
current-induced decoherence, and it establishes a large regime dominated by single-channel Kondo
physics for asymmetrically coupled quantum dots.

DOI: 10.1103/PhysRevLett.95.056602 PACS numbers: 72.15.Qm, 72.10.Fk, 73.63.Kv
Since the first experimental observations of the Kondo
effect in the Coulomb blockade regime of quantum dots
[1–3], a wealth of experimental and theoretical work has
addressed the properties of this highly controllable corre-
lated electron system. If a quantum dot weakly coupled to
two leads carries a net spin, resonant tunneling through the
dot becomes possible and leads to a Kondoesque increase
of the conductance up to the unitarity limit upon lowering
the temperature [4–6]. These realizations of the Kondo
effect in quantum dots have led to new questions related to
the out-of-equilibrium nature of the Kondo system with a
stationary current for an applied voltage bias. Despite
many theoretical efforts (e.g., Refs. [7–13]), a satisfactory
theory for the out-of-equilibrium Kondo effect does not yet
exist. Most theoretical methods that have been developed
for equilibrium [14] cannot easily be generalized to the
nonequilibrium situation.

In this Letter, we focus on the case of large voltage bias
V � TK at zero temperature (T � 0) as a step toward a
more complete understanding of the out-of-equilibrium
Kondo model. Kaminski et al. [10] first suggested a
‘‘poor man’s’’ scaling approach, and subsequently Rosch
et al. [11] developed a more sophisticated approach based
on frequency-dependent vertices and Keldysh diagram-
matics. Both groups noted that decoherence generated by
the current is essential since it introduces the decoherence
rate �rel / V=ln

2�V=TK� due to nonequilibrium spin re-
laxation processes. However, a scaling picture in a
Hamiltonian framework in which this decoherence scale
emerges naturally has as yet not been developed. This
Letter shows that the method of infinitesimal unitary trans-
formations (‘‘flow equations’’) [15,16] provides such a
suitable generalization of Anderson’s poor man’s scaling
picture [17]. It allows one to study the flow of coupling
constants and the ensuing phase diagram in a way that is
similar to the scaling analysis of an equilibrium problem,
and it establishes a large regime dominated by single-
channel Kondo physics for asymmetrically coupled quan-
tum dots.

We consider a Hamiltonian describing a spin-1=2 degree
of freedom ~S coupled to two leads a, a0 � l, r with voltage
05=95(5)=056602(4)$23.00 05660
bias V as an effective model for a quantum dot in the
Kondo regime
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a0p0� ~���cap�, p; p0 are momen-

tum labels and �l;r � �V=2. If the quantum dot can be
described by an Anderson impurity model with tunneling
rates �l;r from the left or right lead, the coupling constants
are related by J2lr � JllJrr and Jll=Jrr � �l=�r (notice
Jlr � Jrl for hermiticity) [10].

The flow equation method [15] makes a Hamiltonian
increasingly diagonal by applying a sequence of infinitesi-
mal unitary transformations with an antihermitean genera-
tor �: dHdB � ���B�; H�B�. Here B labels a one-parameter
family of unitarily equivalent Hamiltonians and has the
dimension �energy��2:H�B � 0� is the initial Hamiltonian
and H�B� is the unitarily equivalent Hamiltonian with
matrix elements with energy differences j�Ej * B�1=2

being eliminated. This renormalization group (RG)-like
separation of energy scales for B! 1 can be achieved
by choosing the generator as the commutator of the diago-

nal and the interaction part of the Hamiltonian: ��B��

�
def
�H0�B�; Hint�B�. In contrast to conventional scaling

approaches that successively eliminate high-energy states
in the Hilbert space, the flow equation method keeps all
states but makes the scattering processes increasingly more
energy diagonal. This method has been successfully ap-
plied to numerous equilibrium many-body problems (e.g.,
Refs. [18–20]), where it correctly describes the RG-flow in
which the UV cutoff is identified as � / B�1=2. For an out-
of-equilibrium model like the Kondo model with voltage
bias, the difference between state elimination and flow
equation diagonalization turns out to be more fundamental
(see Fig. 1); in the flow equation picture scaling below
B�1=2 < V is straightforward. In particular, the flow equa-
tion Hamiltonian H�B� for B�1=2 < V still describes the
stationary current flowing across the dot since energy-
diagonal scattering processes are not eliminated, which is
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FIG. 1. Left: Conventional scaling picture where states are
integrated out. Right: Flow equation approach. Here all scatter-
ing processes with energy transfer j�Ej & B�1=2 are retained in
H�B�. Both pictures depict a late phase of the flow where � and
B�1=2 are smaller than the voltage bias. Scattering processes
between all states are taken into account in the initial phase of
the flow (not depicted here).
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essential for obtaining the current-induced decoherence
scale.

We apply the flow equation approach with the canonical
choice of � (where H0 is the kinetic energy of the elec-
05660
trons) to the Kondo Hamiltonian (1). During the flow
higher order interactions are generated and we parametrize
the Hamiltonian as
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where : . . . : denotes normal-ordering with respect to the
unperturbed Fermi sea [15]. Here t0; t are general indices,
initially Kt0t;u0u�B � 0� � 0 and we neglect newly gener-
ated normal-ordered terms inO�J3� and higher. Notice that
this is a nonperturbative (RG-like) approximation scheme
since the coupling constant becomes a running coupling
constant during the flow. Straightforward calculations lead
to the following set of flow equations [21]:
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Here the Fermi sea expectation values n	�u� �
def
hcyucui and

n��u� �
def
hcuc

y
u i arise due to the normal-ordering prescrip-

tion. A nontrivial test for this calculation is provided by the
equilibrium case where t just describes the momentum
label. Then the strong-coupling processes that determine
TK occur due to the presence of the single Fermi surface
[14] and one can use the parametrization !Jp0p�B� �
g�B� exp��B�p0 � p�2� with the dimensionless IR-
coupling constant at the Fermi level g�B� � !JFF �B�.
This parametrization becomes asymptotically correct in
the IR limit and by inserting it in Eqs. (3) and (4), one
derives the conventional third order scaling equation for
the equilibrium Kondo model, dg=d ln� � �g2 	 g3=2
(with the identification ln� � ��1=2� lnB).

Equations. (3) and (4) contain complete information
about the Hamiltonian flow with voltage bias to O�J4�,
O�J3�, respectively, and can be analyzed without further
approximations [21]. However, in order to gain analytical
insight one can employ the following approximate parame-
trization that focuses on the IR limit: !J�ap0��ap��B� �
ga�B� exp��B�p0 � p�

2 with ga�B� � !J�a�a��a�a��B�
for a � l; r, and !J�lp0��rp��B� � !J�rp��lp0��B� � gt�B� �
exp��B�p0 � p�

2� with gt�B� � 1=��l ��r� �R
�l
�r
d!J�l��r��B�. Here gl and gr are the coupling con-

stants for left-left and right-right scattering processes lo-
cated at the respective Fermi surfaces. For gt we choose an
average over the transport couplings since this average is
directly related to current and conductance [22]. Inserting
these parametrizations into Eqs. (3) and (4), one arrives at
the following set of equations that have to be integrated
starting from B � D�2 (D is the initial UV-band cutoff,
a � l; r):
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where dkbc=dB � gbgc with the initial condition kbc�B �
D�2� � 0 for all b; c � l; r; t. The scaling picture deduced
from Eqs. (5) and (6) is the main result of this Letter.

Equations (5) and (6) take different forms for B�1=2 *V
and B�1=2 & V. We first analyze the scaling behavior down
to the scale set by the voltage bias; only terms up to second
order need to be taken into account here (higher order
terms are unimportant for V � TK). One arrives at a set
of equations already analyzed in Ref. [10] (a � l; r):

dga
dB

�
1

2B
�g2a 	 g2t �;

dgt
dB

�
1

2B
gt�gl 	 gr�: (7)

In the following discussion we only look at Kondo dots
described by an Anderson impurity model. The scaling
invariant Kondo temperature is then set by the equilibrium
case, TK � D

����������������
gl 	 gr

p
exp��1=gl 	 gr�, and one easily

shows gt�B � V�2� � �
����������
�l�r

p
=�l 	 �r�= ln�V=TK�. From

(6) one deduces that the growth of gt effectively stops
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FIG. 2 (color online). Universal curves for the flow of the
coupling constants gl (solid lines), gt (dashed lines) and gr
(dotted lines) for symmetrically coupled quantum dots
[(a) with �l=�r � 1] and for an asymmetrically coupled quan-
tum dot [(b) with �l=�r � 4]. Results are shown for various
ratios V=TK labeling the curves from top to bottom. gl and gr
coincide in the symmetric case, therefore only gl is shown in a.
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below the voltage bias scale since there is no sharp Fermi
surface for transport processes. However, looking at the
second order terms in (5) the strong-coupling divergences
for gl and gr are not cut off. This has led to the prediction
of two-channel Kondo physics in Kondo dots with voltage
bias [23]. But even in the weak-coupling regime third order
terms in the coupling constant eventually become more
important than second order terms for nonvanishing volt-
age bias in (5) and (6). For B�1=2 & V the dominant terms
in the flow equations are approximately (but sufficiently
accurate for a qualitative picture)
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The flow changes qualitatively below the decoherence
scale B�1=2

dec � Vg2t �B � V�2�: for B * Bdec algebraic de-
cay gt�B� / B�1=4 sets in. In Eq. (9) one can then study the
competition between coherent strong-coupling behavior
from the second order term, and decoherence effects that
arise in linear order in ga for B * Bdec. The growth of the
coupling constants gl, gr stops at the decoherence scale
unless the coupling constants have already become too
large. This qualitative analysis is confirmed by the numeri-
cal solution of the full set of Eqs. (5) and (6) depicted in
Fig. 2. Also notice that current-induced decoherence
enters differently from temperature into the flow Eq. (9).
Temperature acts as an infrared cutoff in the Kondo strong-
coupling terms g2a=2B, whereas current-induced decoher-
ence and the coherent strong-coupling processes are in
competition. Therefore the Hamiltonian flow derived in
this Letter confirms the existence of the decoherence rate
�rel / B

�1=2
dec due to current-induced spin relaxation

[10,11]. It is essential to work in a framework where
energy-diagonal processes are retained because this means
that a ‘‘window’’ of order voltage bias is open for transport
(compare Fig. 1). It is exactly these transport processes that
are responsible for the emergence of the decoherence scale
since they lead to the VB�1=2 terms in (8) and (9). A
conventional scaling approach that removes states around
the two Fermi surfaces and therefore purports to treat
energy-diagonal transport processes (see Fig. 1) cannot
describe this and leads to 1=B terms instead [24].

Since we now know explicitly how decoherence enters
into flow equations (5) and (6), we can determine a quan-
titative phase diagram. The scaling curves for symmetri-
cally coupled Kondo dots in Fig. 2(a) confirm the absence
of two-channel Kondo physics for large voltage bias in the
sense that all couplings remain small. We define the strong-
coupling regime by requiring that at least one coupling
grows larger than 0.5; the resulting curve is depicted in
Fig. 3 [25]. This line should not be interpreted as a phase
transition; the crossover is expected to be smooth—similar
to the effect of temperature in the equilibrium Kondo
05660
model. For asymmetrically coupled Kondo dots this
strong-coupling regime extends to remarkably large values
of the voltage bias due to the ‘‘bifurcating’’ structure of the
flow [see Fig. 2(b)] and since the decoherence scale B�1=2

dec
is proportional to the current I (see below); for a given ratio
of V=TK the maximum value of I=TK is achieved for
symmetrically coupled dots. Therefore current-induced
decoherence is less effective in asymmetrically coupled
Kondo dots when competing with the coherent interlead
strong-coupling processes.

Experimentally, this phase diagram can be explored by
measuring the Kondo dot density of states !d�!�, e.g., via a
3-lead setup [26]. The strong-coupling regime in asym-
metric Kondo dots implies a density of states at the Fermi
level of the more strongly coupled lead that only drops
significantly (&25%) below the Friedel value once V=TK
is well in the weak-coupling regime in Fig. 3. For already
small asymmetries the crossover to the strong-coupling
regime is driven by single-channel Kondo physics in the
sense that the couplings at one Fermi surface start to
dominate strongly. This effect can be traced into the
weak-coupling regime by the observation that the ratio of
the local density of states at the two Fermi levels is then
given by !d��l�=!d��r���2 with ��gl�Bl��r=gr�Br��l
from Fig. 3: here Ba is defined as the B value where ga�Ba�
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FIG. 3 (color online). Phase diagram of the nonequilibrium
Kondo model as a function of asymmetry �l=�r and voltage bias.
The solid line separates a weak-coupling regime (defined by all
couplings remaining smaller than 0.5 during the entire flow)
from a strong-coupling regime. The contour lines (dashed) show
the ratio � � gl�Bl��r=gr�Br��l; see text.
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takes its maximum value and the expression for � follows
from a conventional Keldysh calculation [11] with the
effective Hamiltonian H�B� on this scale [27]. The ob-
servation !d��l�=!d��r� � 1 in asymmetric Kondo dots
has also been made in other approaches though without
obtaining a quantitative phase diagram (compare
Refs. [11,26,28]).

A final remark regarding the calculation of observables:
these need to be unitarily transformed as well [18] (they
typically change their form completely once B * Bdec).
For example, the current operator remains form invariant
with the flowing coupling gt�B� up to scale Bdec: I�B� �
igt�B�

P
p0;p

~S 
�~s�lp0��rp� � ~s�rp0��lp��. One can then work
with the renormalized effective Hamiltonian on the scale
Bdec and a conventional Keldysh calculation yields I �
�3'=4�Vg2t �Bdec�. This leads to the well-known perturba-
tive result for the conductance [10] G�V� � Gu�3'

2=16�=
ln2�V=TK� where Gu � �e2='@�4�l�r=��l 	 �r�

2 is the
conductance in the unitarity limit. Notice that transport
quantities are not low-energy properties like the Kondo
dot density of states at the Fermi levels and are therefore
unaffected by the strong-coupling physics in Fig. 3 as long
as V � TK.

Summing up, we have developed a Hamiltonian scaling
picture for Kondo dots with voltage bias that allows us to
express physical quantities in terms of renormalized pa-
rameters. We confirm the absence of two-channel Kondo
physics for symmetrically coupled quantum dots, and show
the existence of a large regime dominated by single-
channel strong-coupling physics for asymmetric dots.
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