
PRL 95, 056401 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
29 JULY 2005
Interaction-Induced Adiabatic Cooling and Antiferromagnetism
of Cold Fermions in Optical Lattices

F. Werner,1,2 O. Parcollet,3 A. Georges,2 and S. R. Hassan2

1LKB, Ecole Normale Supérieure, 24 Rue Lhomond, 75231 Paris Cedex 05, France
2CPHT, Ecole Polytechnique, 91128 Palaiseau Cedex, France

3SPhT, CEA-Saclay, 91191 Gif sur Yvette Cedex, France
(Received 31 March 2005; published 25 July 2005)
0031-9007=
We propose an interaction-induced cooling mechanism for two-component cold fermions in an optical
lattice. It is based on an increase of the spin entropy upon localization, an analogue of the Pomeranchuk
effect in liquid helium 3. We discuss its application to the experimental realization of the antiferromag-
netic phase. We illustrate our arguments with dynamical mean-field theory calculations.
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Cold atoms in optical lattices [1] offer a promising
laboratory for the study of strongly correlated systems,
bringing quantum optics to have bearing on key issues in
condensed matter physics. Pioneering experiments on the
Mott insulator to superfluid transition [2] have demon-
strated the possibility [3] of probing quantum phase tran-
sitions between different ground states of these systems.
Recently, great progress has been achieved on cold Fermi
gases as well, resulting in the production of molecular
condensates in trapped gases [4–7] and the first imaging
of Fermi surfaces in a three-dimensional optical lattice [8].
Controllability is one of the most remarkable aspects of
these systems, with the possibility of tuning both the
tunneling amplitude between lattice sites (t) and the on-
site interaction strength (U), by varying the depth of the
optical lattice and by varying the interatomic scattering
length thanks to Feshbach resonances.

In this Letter, we consider fermionic atoms with two
hyperfine (‘‘spin’’) states in an optical lattice. When the
lattice is deep and the scattering length is small (see below
for a precise condition), a one-band Hubbard model is
realized. The main physical effect studied in this Letter is
the possibility of cooling down the system by increasing
the interaction strength adiabatically. As described below,
this is due to a higher degree of localization—and hence an
increase in spin entropy—as U=t or the temperature is
increased. This is a direct analogue of the Pomeranchuk
effect in liquid helium 3. This mechanism relies on inter-
actions and should be distinguished from the adiabatic
cooling for noninteracting atoms in the lattice discussed
in [9,10]. The second main goal of the present Letter is to
study how this effect can be used in order to reach the
phase with antiferromagnetic (AF) long-range order. For
deep lattices (large U=t), the Néel temperature is expected
to become very low, of the order of the magnetic super-
exchange JAF � 4t2=U. Naively, it would seem that this
requires extreme cooling of the gas. Here, we point out that
the appropriate concept is actually the entropy along the
antiferromagnetic critical line, and that at large U=t this
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quantity tends to a finite constant which depends only on
the specific lattice. Hence, cooling the gas down to a
temperature corresponding to this finite entropy per
atom, and then following equal-entropy trajectories, should
be enough to reach the magnetic phase. These physical
observations are substantiated by theoretical calculations
using, in particular, dynamical mean-field theory (DMFT)
[11,12], an approach that has led to important progress on
strongly correlated fermion systems in recent years.

We consider the one-band repulsive Hubbard model:
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where i and j are site indices on the lattice, and 	 �"; #
is a spin index associated with the two hyperfine states.
The conditions under which two-component fermionic
atoms in an optical lattice actually realize such a single-
band lattice model will be discussed later. On an unfrus-
trated bipartite three-dimensional lattice (e.g., the cubic
lattice), with hopping between nearest-neighbor sites tij �
t, and for one particle per site on average (half filling),
the physics of this model is rather well understood (see,
e.g., [13]). For temperatures above the Néel critical tem-
perature TN, the system is a paramagnet with an increasing
tendency to Mott localization as U=t is increased (the
Mott gap becomes of order U at large U=t). For T < TN,
the antiferromagnetic phase (Fig. 1) displays a two-
sublattice spin ordering and a doubling of the unit cell.
At weak coupling (small U=t), this is a spin-density wave
instability with a weak modulation of the sublattice mag-
netization. In this regime, TN is exponentially small in t=U,
as a simple Hartree mean-field theory suggests. At strong
coupling (large U=t), the low-energy sector of the model
is described by a Heisenberg exchange Hamiltonian
JAF�hiji

~Si 	 ~Sj, with JAF � 4t2=U. In this Heisenberg limit,
TN � �JAF, with � a numerical constant depending on the
lattice (� � 0:957 for the cubic lattice [13]). These two
regimes are connected by a smooth crossover (which is
equivalent to the Bose-Einstein-condensation–BCS cross-
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FIG. 1 (color online). Phase diagram of the half-filled Hubbard
model on the cubic lattice: antiferromagnetic (AF) and paramag-
netic (PM) phases. Transition temperature within DMFT ap-
proximation (solid curve, open circles) and QMC calculation
of Ref. [13] (dot-dashed curve, squares). Dashed lines: isentropic
curves (s � 0:4, 0.7, 0.75, 0.8), computed within DMFT. Dotted
line: quasiparticle coherence scale T�

F�U�. The DMFT results
were obtained with QMC calculations (for TN) and the IPT
approximation [11] (for the isentropics). The transition curves
are interpolations, continued at high U=t using the analytical
expressions for the Heisenberg regime.
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over at half filling). The Néel temperature displays a
maximum at intermediate coupling, as a function of U=t.
This is illustrated by Fig. 1, in which we display our
calculation of TN vs U=t, using the DMFT approximation
on the cubic lattice and the quantum Monte Carlo (QMC)
Hirsch-Fye algorithm. DMFT overestimates TN by about
50% in the intermediate coupling regime, in comparison to
the direct QMC calculations of Ref. [13] on the cubic
lattice (also displayed in Fig. 1).

We now discuss how the entropy varies as the effective
strength of the on-site interaction U=t is changed in the
paramagnetic phase. Since all properties depend on the
ratios T=t and U=t, we can consider that the hopping is
fixed and that T and U are varied, or alternatively that both
the temperature and coupling are measured in units of t, the
natural unit of kinetic energy. Denoting by f and s the free
energy and entropy per lattice site, respectively, one has
s � �@f=@T and @f=@U � d, with d the probability that
a given site is doubly occupied: d 
 hni"ni#i. We thus
obtain
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FIG. 2. Double occupancy d � hni"ni#i as a function of tem-
perature, for several values of U=t, calculated within DMFT
(IPT). The initial decrease is the Pomeranchuk effect responsible
for adiabatic cooling.
This equation can be used to discuss qualitatively the shape
of the isentropic curves Ti � Ti�U� in the �U; T� phase
diagram, along which s�Ti�U�; U� � const. Taking a de-
rivative of this equation yields
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in which c � T@s=@T is the specific heat per lattice site.
Fortunately, the temperature dependence of the probability
of double occupancy d�T� has been studied in previous
work by one of the authors [14,15] and others [16]. It was
observed that, when U=t is not too large, the double
occupancy first decreases as temperature is increased
from T � 0 (indicating a higher degree of localization),
and then turns around and grows again. This is shown
in Fig. 2 using DMFT calculations. This apparently coun-
terintuitive behavior is a direct analogue of the
Pomeranchuk effect in liquid helium 3: Since the (spin)
entropy is larger in a localized state than when the fermions
form a Fermi liquid (in which s / T), it is favorable to
increase the degree of localization upon heating. The mini-
mum of d�T� essentially coincides with the quasiparticle
coherence scale T�

F�U�, which is a rapidly decreasing
function of U (Fig. 1). This phenomenon therefore applies
only as long as T�

F > TN , and hence when U=t is not too
large. For large U=t, Mott localization dominates for all
temperatures T < U and suppresses this effect. Since
@d=@T < 0 for T < T�

F�U� while @d=@T > 0 for T >
T�
F�U�, Eq. (3) implies that the isentropic curves of the

half-filled Hubbard model (for not too high values of the
entropy) must have a negative slope at weak to intermedi-
ate coupling, before turning around at stronger coupling. In
order to substantiate this behavior, inferred on rather gen-
eral grounds, we have performed DMFT calculations of the
isentropic curves, with results displayed in Fig. 1. The
entropy s�T� was calculated by integrating the internal
energy per site e�T� according to s�T� � ln4� e�T�=T �R
1
T dT

0e�T0�=T02, which follows from the thermodynamic
relation @Te � T@Ts. The DMFT equations were solved
using the ‘‘iterated perturbation theory’’ (IPT) approxima-
tion [11] (using, for simplicity, a semicircular density of
1-2



0 10 20
U / t

0

0.5

1

s

s
H

PM

AF

s
max

FIG. 3. Phase diagram as a function of entropy. The displayed
curve results from a DMFT-IPT calculation (in which case sH �
ln2), but its shape is expected to be general (with sH reduced by
quantum fluctuations).

PRL 95, 056401 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
29 JULY 2005
states), and the internal energy was calculated from the
one-particle Green’s function.

It is clear from the results of Fig. 1 that, starting from a
low enough initial value of the entropy per site, adiabatic
cooling can be achieved by either increasing U=t starting
from a small value or decreasing U=t starting from a large
value (the latter, however, requires one to cool down the
gas while the lattice is already present). We emphasize that
this cooling mechanism is an interaction-driven phenome-
non: indeed, as U=t is increased, it allows one to lower the
reduced temperature T=t, normalized to the natural scale
for the Fermi energy in the presence of the lattice. Hence,
cooling is not simply due to the tunneling amplitude t
becoming smaller as the lattice is turned on. At weak
coupling and low temperature, the cooling mechanism
can be related to the effective mass of quasiparticles ( /
1=T�

F) becoming heavier as U=t is increased, due to Mott
localization. Indeed, in this regime, the entropy is propor-
tional to T=T�

F�U�. Hence, conserving the entropy while
increasing U=t adiabatically from �U=t�i to �U=t�f will
reduce the final temperature in comparison to the initial
one Ti according to Tf=Ti � T�

F�Uf�=T
�
F�Ui�.

At this stage, let us briefly discuss the validity of the
DMFT approach, extensively used in the present work. In
this approach, the lattice model is mapped onto a single-
site quantum problem coupled to a self-consistent effective
medium. This is an approximation, which becomes exact
only in the limit of infinite lattice coordination [11]. As a
local approach, it underestimates the precursor antiferro-
magnetic correlations above TN , which will in turn quench
the entropy and ultimately play against the cooling mecha-
nism very close to TN . However, as long as the correlation
length is not too large, a local approximation should be
accurate. Indeed, the existence of a minimum in d�T� has
been confirmed by the calculations of Ref. [17] using a
different method, for a three-dimensional lattice, suggest-
ing that the cooling mechanism discussed here is a robust
effect.

The isentropic curves in Fig. 1 suggest that interaction-
induced adiabatic cooling could be used in order to reach
the magnetically ordered phase. To explore this idea in
more details, we focus on the entropy along the Néel
critical boundary sN�U� 
 s�TN�U�; U�. At weak coupling
(the spin-density wave regime), sN�U� is expected to be
exponentially small. In contrast, in the opposite
Heisenberg regime of largeU=t, sN will reach a finite value
sH, which is the entropy of the quantum Heisenberg model
at its critical point. sH is a pure number which depends
only on the specific lattice of interest. Mean-field theory of
the Heisenberg model yields sH � ln2, but quantum fluc-
tuations will reduce this number. We have performed a
Schwinger boson calculation of this quantity, along the
lines of [18,19], and found that this reduction is of the
order of 50% on the cubic lattice. How does sN evolve from
weak to strong coupling? A rather general argument sug-
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gests that it should go through a maximum smax > sH. In
order to see this, we use again (2) and take a derivative of
sN � s�TN�U�; U�, which yields

dsN
dU

�
c�TN�
TN

dTN
dU

�
@d
@T

��������T�TN

: (4)

If only the first term was present on the right-hand side of
this equation, it would imply that sN is maximum exactly at
the value of the coupling where TN is maximum [note that
c�TN� is finite (�< 0) for the 3D Heisenberg model [20] ].
However, in view of the above properties of the double
occupancy, the second term on the right-hand side has a
similar variation than the first one: it starts positive, and
then changes sign at an intermediate coupling when
T�
F�U� � TN�U�. These considerations suggest that sN�U�

does reach a maximum value at intermediate coupling, in
the same regime where TN reaches a maximum. Hence,
sN�U� has the general form sketched in Fig. 3. This figure
can be viewed as a phase diagram of the half-filled
Hubbard model, in which entropy itself is used as a ther-
mometer, a very natural representation when addressing
adiabatic cooling. Experimentally, one may first cool down
the gas (in the absence of the optical lattice) to a tempera-
ture where the entropy per particle is lower than sH (this
corresponds to T=TF < sH=�

2 for a trapped ideal gas).
Then, by branching on the optical lattice adiabatically,
one could increase U=t until one particle per site is reached
over most of the trap: this should allow one to reach the
antiferromagnetic phase. Assuming that the time scale for
adiabaticity is simply set by the hopping, we observe that
typically @=t� 1 ms.

Let us now discuss the conditions under which two-
component fermions in an optical lattice are accurately
described by the Hubbard Hamiltonian (1) (see also
[1,3]). The many-body Hamiltonian is written in second-
1-3
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FIG. 4 (color online). Spin-density wave and Heisenberg re-
gimes as a function of the depth of the periodic potential V0 and
the scattering length as. The crossover between these regimes is
indicated by the dotted line (U=t � 10), where TN=t is maxi-
mum (other contour lines are also indicated). In the shaded
region, the one-band Hubbard description is no longer valid.
Above the dashed line (U=�> 0:1), other bands must be taken
into account and the pseudopotential approximation fails. Above
the dashed-dotted line, non-Hubbard interaction terms become
sizeable (td=t > 0:1, see text).
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quantized form using as single-particle basis functions the
Wannier functions associated with the periodic potential
Vopt�~r� � V0�

3
i�1sin

2��xi=a� (the lattice spacing is a �

 =2, with  the wavelength of the laser). The interaction
terms are obtained as matrix elements of the low-energy
effective potential Vint� ~r1 � ~r2� �

4�@2as
m "3�~r1 � ~r2�,

where as is the scattering length. In general, this results
in a multiband model which, besides the on-site Hubbard
interaction, involves also more complicated interaction
terms such as nearest-neighbor interactions or density-
assisted hopping terms of the form tdc

y
i cjni, with i and j

neighboring sites. By explicitly computing these terms, as
well as the one-body part of the Hamiltonian, we examined
under which conditions (i) the reduction to a one-band
model is valid and (ii) these non-Hubbard interactions
are negligible. This determines a domain in the
�V0=ER; as=a� plane (with ER � @

2�2=2ma2 the recoil
energy), which is depicted in Fig. 4. Condition (i) requires,
in particular, that the on-site Hubbard repulsion is smaller
than the gap � between the first and the second band: U �
�. At large values of V0=ER, it can be shown that this is
also the condition for our use of the pseudopotential ap-
proximation to be valid: as � l0, with l0 the spatial ex-
tension of the Wannier function of the first band. We found
that the stricter condition of type (ii) originates from
density-assisted hopping terms which should obey td �
t. We also displayed in Fig. 4 some contour lines associated
with a given value of U=t. The one associated with U=t �
10 can be taken as the approximate separatrix between the
05640
spin-density wave and Heisenberg antiferromagnetic re-
gions. TN=t is maximal along this line, and TN < 0:015ER
in the allowed region. Thus adiabatic cooling is important
to reach the AF phase. Since V0 and as are the two
experimentally tunable parameters, Fig. 4 aims at summa-
rizing useful information for such experimental investiga-
tions. The detection of the antiferromagnetic long-range
order might be achieved by spin-selective Bragg spectros-
copy in order to reveal the doubling of the unit cell. The
two hyperfine states could be distinguished by their
Zeeman splitting or by using polarized light. A different
method, which has been recently proposed [21] and inves-
tigated experimentally [22], is to use quantum noise
interferometry.

To summarize, in this Letter we propose an interaction-
induced cooling mechanism for two-component cold fer-
mions in an optical lattice. One possible application of this
mechanism is in reaching the phase with antiferromagnetic
long-range order.
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