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We present a novel method, which we refer to as the dual minima hopping method, that allows us to find
the global minimum of the potential energy surface (PES) within density functional theory for systems
where a fast but less accurate calculation of the PES is possible. This method can rapidly find the ground
state configuration of clusters and other complex systems with present day computer power by performing
a systematic search. We apply the new method to silicon clusters. Even though these systems have already
been extensively studied by other methods, we find new global minimum candidates for Si;q and Si;q, as
well as new low-lying isomers for Sig, Sij7, and Siyg.
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Determining the structure of a molecule, cluster, or
crystal is one of the most fundamental and important tasks
in solid state physics and chemistry. Practically all physical
properties of a system depend on its structure. The struc-
tural configurations of a system are determined by the
Born-Oppenheimer potential energy surface (PES), which
gives the energy of a system as a function of its atomic
coordinates. Minima of the PES give stable configurations.
The global minimum gives the ground state configuration.
At low enough temperature the system will be found in this
global minimum structure assuming that this structure is
kinetically accessible. Since the zero-point energy of dif-
ferent structures varies negligibly, the determination of the
ground state structure is equivalent to the mathematical
problem of finding the global minimum of the PES.

It is well established that the PES of a condensed matter
system can be calculated with good accuracy within den-
sity functional theory (DFT). Nevertheless, DFT methods
have not been used up to now as a standard tool in algo-
rithms that attempt to determine the ground state of com-
plex systems because most algorithms for the
determination of the global minimum require an enormous
number of evaluations of the PES. Since each evaluation
requires a full electronic structure calculation, these algo-
rithms are computationally too demanding within the full
DFT framework. A systematic search for the global mini-
mum is, however, possible with cheaper methods such as
tight binding and force field methods.

In summary, with present methods one has the choice
either of using methods with a limited power of predict-
ability or of doing a constrained search for the global
minimum. In a constrained search one fixes some atomic
positions or imposes some structural motifs, but experience
shows that the global minimum is often missed in this way.
To overcome this dilemma, several researchers have
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adopted an approach where one first effectuates a system-
atic search with a method that allows for a fast but inaccu-
rate calculation of the PES to obtain some candidate
structures. Which of the candidate structures is lowest in
energy is determined in a second step by DFT calculations.
As we show later, this approach is generally not applicable.

Other researchers have combined systematic search al-
gorithms with DFT methods, but their algorithms required
too many DFT calculations to be computationally feasible
if one wants to find the global minimum. Réthlisberger
et al. [1] have used simulated annealing within DFT to find
structural motifs of the midsize clusters, but their final
lowest energy geometries were obtained by other means.
Yoo and Zeng [2,3] have combined basin-hopping (BH)
with DFT and were able to find new low-lying minima for
some clusters, among them Si;q, Sij7, and Sijg. For Sig,
they have found a new global minimum structure by per-
forming a systematic BH search within DFT. Both the
systematic BH for Si;¢ as well as the constrained BH for
Siy; and Si;g within DFT have missed the global minimum.

In this Letter we present a method that allows for a
systematic search for the global minimum of the PES of
a complex system within DFT. The method is a modifica-
tion of the minima hopping method (MHM) [4]. In the
MHM one visits a series of local minima until the global
minimum is found. The algorithm has a double loop struc-
ture. In the inner loop one attempts to escape from the
current minimum, and in the outer loop one accepts or
rejects new minima found by successful escape attempts. A
history list keeps track of all minima found. A feedback
mechanism uses information from this history list to make
more vigorous escape attempts when the algorithm is
revisiting previously found minima, thereby preventing
the algorithm from getting trapped in an incorrect mini-
mum. The inner escape loop contains two basic steps. The
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first does a certain number of molecular dynamics (MD)
moves until one has overcome at least one energy barrier.
The second step consists in performing a standard geome-
try relaxation to reach the closest minimum with an accu-
rate method.

In the ordinary version of the MHM [4] the forces for the
MD and for the geometry optimization part are done with
the same method. Fast methods such as force field or tight
binding methods have to be used to limit the computing
time to an acceptable length. In the modified MHM pre-
sented in this Letter two different methods are combined: a
slow but accurate method and a fast but less accurate
method. The fast method is used for the MD part and for
the first few steps of the geometry optimization. The accu-
rate method is then used for the final geometry optimiza-
tion and the evaluation of the energy of the relaxed
structure. In this way the search for the global minimum
is reduced to a relatively small number of geometry opti-
mizations with the accurate and expensive method plus a
much larger number of force evaluations with the fast
method. Henceforth, we refer to this modified minima
hopping algorithm, which combines the two methods for
the calculation of the forces, as the dual minima hopping
method.

The fact that the input configuration for the geometry
optimization with the accurate method is a configuration
that was prerelaxed with the fast method is important for
the stability of the entire algorithm if the accurate method
is a DFT method. DFT programs typically do not converge
if the input configuration is far from any physically rea-
sonable configuration. The prerelaxation with the fast
method excludes the possibility that a physically unreason-
able state is used as an input configuration. From the
previous considerations it might seem advantageous to do
a full prerelaxation, i.e., to use a minimum of the fast
method as the input for the geometry optimization with
the accurate method. If the fast method is a reasonable
approximation, then a local minimum found by it will often
be close to a local minimum of the accurate method.

Unfortunately, in general there is no one-to-one corre-
spondence between minima obtained from the two meth-
ods. Therefore, some minima obtained using the accurate
method are inaccessible from the starting configurations
provided by the fast method. For this reason only a small
number of steps should be done in the prerelaxation with
the fast method. In this way the ensemble of the starting
configurations for the geometry optimization with the ac-
curate method comprises a considerable part of the con-
figurational space (and not only the ensemble of all the
minima of the fast method), and one can reach virtually any
minimum of the accurate method.

The Bell-Evans-Polanyi (BEP) principle [5] states that
highly exothermic chemical reactions have a low activation
energy. In the context of a global minimum search, this
means energetically low configurations will preferably be

found behind low energy barriers. The BEP principle is
essential for the success of the MHM as has been shown in
[4]. The correlation between the barrier height and the
energy of the minimum “behind” the barrier certainly
deteriorates if one is combining two different methods.
This implies more local minima will be visited, on average,
with the dual minima hopping method (DMHM) before the
global minimum is found than with the ordinary MHM. In
order to explore the influence of this reduced correlation
we did systematic tests with a 38 atom Lennard-Jones (LJ)
cluster. This is a system for which the global minimum is
hard to find since it is contained in a small secondary
funnel [6], but the computing time is small since the
potential can be evaluated very rapidly. As the accurate
method we used the LJ potential. As the “fast” method we
used a truncated polynomial approximation of the LJ po-
tential as shown in Fig. 1. As expected, the number of local
minima that are visited on average before the global mini-
mum is found increases from 380 to 530; nevertheless, the
number of force evaluations needed with the “expensive”
exact L] method is reduced by a factor of 5.

To demonstrate that the DMHM can, indeed, find the
global ground state geometry of real clusters, we have
applied it to silicon clusters. Numerous groups are involved
in the search of the ground state of silicon clusters, and
there are at least 50 theoretical papers on this subject [1-
3,7-17]. Applying DMHM to silicon clusters, we were
able to find within several days of computing time all of
the known structures [9—12] in the range Sis-Si9, and we
even found lower energy structures for Si;q and Sijg in
spite of the fact that silicon clusters up to 19 atoms in size
have already been extensively studied. The new global
minimum structures within CPMD-PBE (see below) Sijg,
and Si,q, as well as the new low-lying isomers Si;g, Sij7,,
Siy75, and Sijg, are shown in Fig. 2. The structure Sijg,
contains the tricapped trigonal prism (TTP)-Sig subunit
[18] and is compact in contrast to the structure Siq re-
ported by Zeng [3]. The structure Sijg, consists of a
TTP-Siy subunit and a Si;y subunit. The low-lying isomer
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FIG. 1. The truncated polynomial approximation of the
Lennard-Jones potential and the exact Lennard-Jones potential.
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FIG. 2. New low energy geometries Sijg,, Sijeps Sij74> S117p5
Siyg,, and Sijg, found in this work with DMHM and the putative
global minimum structures Sig [3], Siy; [7], Siyg [7], and Sijg
[13] reported previously and reproduced by the DMHM. The
new geometries will be posted on the Cambridge Cluster
Database [24].

Sijgp is compact and highly symmetric. The low-lying
isomer Si;;, consists of a TTP-Sig subunit and a Sig sub-
unit. The low-lying isomer Si;7;, consists of two equal 7-
blocks, which are rotated against each other, and a triangle
as a cleaving block. The structure Sijg, is prolate and
consists of two TTP-Sig subunits that are rotated against
each other. In contrast to the previous works, the new
configurations as well as the putative global minimum
structures reported previously were found by the DMHM
automatically after having visited only a few hundred local
minima.

As the fast method, we have used the Lenosky tight
binding scheme for silicon [19]. The accurate method is
DFT as implemented in the QUICKSTEP code [20]. After
having performed the DMHM with QUICKSTEP using a
relatively small Gaussian basis set and the local density
approximation, we have calculated accurate final energies
and zero-point energies with the CPMD program [21] using
the PBE functional [22], a high accuracy pseudopotential
[23], large supercells (24 A), and a sufficient plane wave
cutoff (28 Ry). The results for the various clusters as
compared to Sije, Sijy, Sijg, and Sijg are presented in
Table 1. In contrast to other exchange-correlation func-
tionals, the PBE functional [22] was not fitted to any
chemical systems with simple bond structures and is ex-
pected to give the most accurate description of the complex
bonding patterns found in silicon clusters. The term “ac-

TABLE I. The energy differences in eV without and with zero-
point energy correction between the new low energy geometries
Siiea, Sitep, Sii7a» Siy7p, Siige, and Sijg, found in this work with
DMHM and the putative global minimum structures Sijq [3],
Siy [7], Siyg [7], and Sijg [13] reported previously using the PBE
exchange-correlation functional as implemented in CPMD.

Cluster Sijgq Sijep Siy7a Siyz Sijgq Sijoq
PBE —0.15 0.02 0.08 0.20 0.24 —0.08
PBE(Z) —0.16 0.01 0.09 0.23 0.19 —0.09

curate’’ must be handled with caution, however, since DFT
is only an approximation and, as a matter of fact, the
energetic ordering may change if one uses different func-
tionals [12].

Among the various force fields and tight binding
schemes we have tested, the Lenosky tight binding scheme
[19] gave the best agreement with the DFT energies. It can
predict the DFT energies with an error of roughly 1 eV as
shown in Fig. 3. Figure 3 also shows why the common
approach of first finding candidate structures by doing a
systematic search with a cheap method and then checking
by an accurate method which of the candidate structures
gives the global minimum is problematic except for very
small systems. For a 25 atom silicon cluster the number of
geometric configurations within 1 eV above the ground
state is of the order of 10* states, for a 33 atom cluster it
is already of the order of 10° states, and it increases
exponentially with system size. It is therefore virtually
impossible to check which one of these 10* to 10° con-
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FIG. 3. The correlation between tight binding and density
functional energies for various configurations of a Si,s cluster.
If the correlation was perfect, all the points would lie on the
diagonal. Instead, the scattering shows that the tight binding
energies can predict the energy differences between various
cluster configurations only with an error of about 1 eV.
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figurations is the global minimum in DFT. Besides, be-
cause of the absence of the one-to-one correspondence
between the local minima of the fast method and of the
accurate method, it is not guaranteed that any of the
minima of the fast method will lead to the global minimum
of the accurate method upon relaxation.

The identification of the previously visited minima is an
essential ingredient of the MHM. In the context of the
ordinary MHM the energy can be used to identify configu-
rations since it is possible to calculate the energy with
many significant digits both for force fields and for tight
binding schemes. With DFT programs this is not any more
possible because of the presence of numerical noise. For
this reason, we have used in addition to the energy all
interatomic distances. Two DFT minima are considered
to be identical if all their interatomic distances ordered by
magnitude agree to within a certain tolerance.

In summary, we have presented a method that allows one
to find the global minimum of the DFT potential energy
surface within acceptable computer time for moderately
complex systems. The method is efficient for the following
reasons. First, it requires only DFT calculations for con-
figurations where DFT programs typically converge with-
out problems. It does not, for instance, require DFT
calculations for configurations generated by random dis-
placements from a previous configuration. Second, the
MHM is highly efficient in the sense that the number of
minima visited before the ground state is found is small.
Even though the DMHM is not quite as good from this
perspective, it is still efficient if the fast method used for
the MD part is qualitatively correct. Third, most of the
force evaluations are done with the fast method and the
total effort for finding the global minimum is equal to the
effort of doing only an affordable number of geometry
optimizations with the accurate method.
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