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We demonstrate experimentally the existence of two transverse-dimensional counterpropagating (CP)
incoherent spatial solitons in a 5 X 5 X 23 mm SBN:60Ce photorefractive crystal and investigate their
dynamical behavior. We carry out numerical simulations that confirm our experimental findings.
Substantially different behavior from the copropagating incoherent solitons is found. A symmetry
breaking transition from stable overlapping CP solitons to unstable transversely displaced CP solitons
is observed. We perform linear stability analysis that predicts the threshold for the splitup transition, in
qualitative agreement with numerical simulations and experimental results.
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Optical spatial solitons have become one of the latest
paradigms in physics [1]. Important for applicative poten-
tial in all-optical information processing, they are gener-
ated in a variety of media, by a variety of nonlinear mecha-
nisms [2]. A common thread to all mechanisms is the self-
focusing effect, produced by light-induced changes in the
medium’s index of refraction. In photorefractive (PR)
crystals self-focusing is achieved through the formation
of space charge field, caused by the photo-induced redis-
tribution of charges in the crystal, which in turn modifies
the refractive index via the linear Pockels effect.

The formation and interactions of incoherent spatial
screening solitons in two transverse dimensions (2D)
have been studied mostly in the copropagation geometry.
Diverse phenomena have been observed, such as soliton
spiraling [3], fusion [4], filamentation [5], and modula-
tional instabilities [6]. However, overlapping copropagat-
ing solitons are found to be stable. The “dynamics” of all
these phenomena have been considered with respect to z,
the propagation direction; no real time has been involved.
Temporal development was followed in a few publications
in 1D, displaying an approach to steady state [7]. The only
publication treating dynamical effects in 2D, that we are
aware of, is our own [8]. Counterpropagating (CP) solitons
were investigated in a few publications [9—12], also in 1D.
They were studied theoretically in Kerr and local PR
media, in the steady state. In addition, Refs. [11,12] con-
tain an experimental observation of stable CP solitons in an
SBNG60 crystal, formed by coherent fields, in the form of
narrow stripes.

Here we present the first experimental evidence of 2D
CP incoherent vector solitons in a similar crystal, display
the transverse splitup instability of such solitons when the
propagation distance and the coupling constant are varied,
and observe dynamical instabilities at higher values of
these parameters. We follow instabilities in time, as well
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show no sign of such instabilities. Using linear stability
analysis (LSA), we attempt to explain the splitup instabil-
ity as a first-order phase transition, caused by spontaneous
symmetry breaking [13], and determine the threshold
curve. We perform numerical simulations of CP beams in
PR media with time-dependent nonlinearity, to qualita-
tively confirm experimental findings and stability analysis.

The study of CP beams is performed in the experimental
setup of Fig. 1. Laser beam derived from a frequency-
doubled Nd:YAG laser emitting at 532 nm is split and
focused onto the opposite faces of a photorefractive
SBN60:Ce crystal (5 X 5 X 23 mm), along one line. The
beam components are made incoherent in the medium by
reflecting one component off the vibrating piezo mirror
(PM). The c axis of the crystal is placed along one of the
5 mm edges, so that by rotating the crystal both the 23 mm
axis and the other 5 mm axis can be utilized as propagation
directions of the beams. To exploit the dominant electro-
optic component r33 = 200 pm/V of our SBN sample, the
incident laser beams are linearly polarized parallel to the ¢
axis, perpendicular to the propagation direction. A dc
electric field, necessary for the screening effect, is applied
across the crystal along the c¢ axis, and the crystal is
illuminated by uniform white light, to create artificial
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as in z. We find that the behavior of CP solitons is essen-  FIG. 1. Experimental setup for the investigation of CP
tially different from the copropagating solitons, which  solitons.
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dark conductivity. Both input and output faces of the
crystal are monitored by CCD cameras.

Stable CP solitons are readily observed over the 5 mm
propagation distance, with an applied field of 1.3 kV/cm
and the initial beam peak intensity of about twice the
background intensity. Incoherent Gaussian beams of
20 um FWHM are launched head-on, and both the for-
ward and the backward propagating beams self-focus
within a few seconds into a CP vector soliton of 20 um
FWHM, tightly overlapping (not shown). When the propa-
gation distance is increased from 5 mm to 23 mm, for
identical other conditions, the beams still self-focus ap-
proximately into solitons, but they do not overlap anymore
[Fig. 2(a)]. At the exit face most of the beam intensity is
expelled to a transversely shifted position (about 1 beam
width), while a fraction of the beam remains guided by the
other beam. At higher applied fields (stronger nonlinearity)
the beams start to move. The motion is such that the exiting
beam rotates about or rapidly passes through the input
beam, or dances irregularly around. No such long-lasting
temporal changes are observed in the copropagation ge-
ometry, and no transverse splitup transition of copropagat-
ing overlapping solitons has been reported, to the best of
our knowledge [14]. All these dynamical phases can quali-
tatively be reproduced by numerical simulation (Fig. 3).

To understand the behavior of CP solitons we formu-
lated a time-dependent model for the formation of self-
trapped bidirectional waveguides [15]. It consists of wave
equations in the paraxial approximation for the propaga-
tion of forward and backward beams, and a relaxation
equation for the generation of space charge field in the
PR crystal, in the isotropic approximation. We view CP
solitons as self-trapped beams with internal modes, whose
dynamics is caused by the changes in the space charge
field. The model equations in the computational space are
of the form:

i9,F = —AF + T'EF, —id,B=—AB+TEB, (1)
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where A is the transverse Laplacian, I = |F|*> + |B|? is the

FIG. 2 (color online). CP soliton after a splitup transition:
Forward propagating component in the steady state. (a) Exit
face of the crystal, experimental. (b) The corresponding numeri-
cal simulation for |Fy|> =|B.|>=0.5, ' =7.17, and L =
5.75Lp = 23 mm.

laser light intensity (in units of the background intensity), 7
is the relaxation time of the crystal, which also depends on
the total intensity, 7 = 7y/(1 + I), and I' is the dimension-
less coupling strength. Temporal derivatives are eliminated
from Eq. (1), due to slow medium response [16]. To further
simplify matters, we did not account for the temperature
(diffusion) effects. In experiment, these effects were com-
pensated by focusing the input B beam at the place of the
exit and in the direction of the output F' beam.

The propagation equations are solved numerically, con-
currently with the temporal equations, in the manner de-
scribed in Ref. [15]. Numerical treatment of CP beams is

t=1610 s

L

FIG. 3 (color online). Typical dynamic behavior of CP solitons
in the unstable region. Left column is an experimental run, right
column the corresponding numerical simulation. Parameters are
as in Fig. 2, except for |Fo|> = |B,|> = 7.
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more complicated than the treatment of copropagating
beams, owing to the essential difference between the two
processes: copropagation is an initial-value problem,
whereas counterpropagation is a two-point boundary-value
problem. The presumed dynamics is such that the space
charge field builds up towards the steady state, which
depends on the light distribution, which in turn is enslaved
to the change in the space charge field. The numerical
procedure consists in solving Eq. (2) for the space charge
field E in time, with the light fields obtained at every step
as guided modes of the induced common waveguide [15].
The convergence in the temporal loop signifies that steady
states are found, but it is not necessarily attained. In that
case time-dependent, dynamical states are observed.

The results of numerical simulations are displayed in
Figs. 2 and 3, together with the experimental results. In
both experiment and simulations unstable regions are
reached upon increasing the thickness of the crystal and
the coupling strength. In numerics we also varied the
intensity of laser light. Dynamical behavior in numerical
simulations qualitatively follows that of the experimental
runs. Typically output beam spots rotate about the input
beam positions, or rapidly pass through them, until stable
displaced equilibrium positions are found. In the case when
no equilibrium is found (for larger I'L) the output beams
continue to dance about the input beams indefinitely. The
first passage through the threshold is reminiscent of a Hopf
bifurcation: a stable equilibrium becomes unstable and a
limit cycle forms about. Previously attractive interaction
between CP beams becomes repelling, and the beams
rotate about each other.

It is difficult to explain this behavior theoretically. In the
standard theory of modulational instabilities (MI) one
follows the dynamics of weak perturbation to a broad
wave and looks for instances of exponential growth of
the perturbation. Such a growth promotes the amplification
of sidebands and leads to the appearance of localized
transverse structures. This approach is used much in the
theory of transverse optical patterns [17]. Here however,
the whole object—a CP soliton—undergoes a symmetry
breaking transverse shift to a new position. In our earlier
publication [18] we presented a simple theory of beam
displacement that can account for such shifts. We attempt
here to utilize the standard MI theory to obtain the thresh-
old curve for the CP soliton splitup that will at least
qualitatively agree with the experimental and numerical
results. We suppose that above the critical wave vector k2
the unstable ring in the transverse k space will focus to a
spot, to which most of the energy (intensity) of the initial
beam will be transferred. The assumption is that a localized
peaked structure in the direct space will form a localized
peaked structure in the inverse space, and that their dy-
namics, in both z and 7, will be correlated. This expectation
is based on the fact that the expectation value of the soliton
position in the transverse plane and the corresponding
soliton momentum form a conjugate pair of variables, so

that the motion of soliton’s “center of mass” is governed
by Hamilton’s equations [18,19].
One starts at the steady state plane-wave solution:

Fo(z) = Fo(0)e M0z, By(z) = By(L)emBol™D), (3)

where Ey = —1,/(1 + I)). It is clear that a plane wave is a
poor approximation to the stable CP soliton; however, it is
known [20] that the agreement with experiment can be
improved by using initial beams of hyper-Gaussian profile.
We are applying LSA to a low-aspect-ratio geometry,
aware of its limited validity, in hopes of obtaining an
estimate on the threshold location in the parameter space
that will correlate with numerical results. The primary
threshold is determined by the linear instability of steady
state plane-wave field amplitudes Fy(z) and B(z), and the
homogeneous part of the space charge field E,. To perform
LSA, a change of variables is made:

F= F()(l + f), B = Bo(l + b), E= Eo(] + 6),

“

along with the change in the boundary conditions f(0) =
b(L) = 0.

Neglecting higher harmonics and quadratic terms in the
perturbations f, b, and e, and following the procedure
described in Ref. [21], we obtain the threshold condition
in a form:

2 + 2cosW, cosW, + (E + &> sinW; sin¥, =0 (5)
v, W

where W, = k’L, ¥, = Vk*L?> — 4ATk*L*>. We choose
|Fol?> = |B.|?, sothat A = |Fy|?/(1 + 2|F,|?)?. This equa-
tion has the same form as the threshold condition in
Ref. [22], except that the form and the meaning of variables
V¥, and W, is different.

It is difficult to compare experimental and numerical
results with the threshold curves represented in Fig. 4,
because for each value of A there are two values of |F,|?
(or |B;|?). For this reason we find it more convenient to
plot the threshold intensity as a function of the square of
the transverse wave vector (Fig. 5); for each pair of values
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FIG. 4. Threshold curves obtained from Eq. (5).
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FIG. 5. Threshold intensity |F,|*> (or |B;|?) versus the square
of transverse wave vector k2, for I = 4 and L = 5Lp. Arrows
cover the regions of jump in k> of the solitons in the inverse
space, obtained numerically.

of I and L then one obtains different threshold curves. An
analysis of Eq. (5) for the given I' and L gives an extra
condition:

kK <T/2 (6)

which means that the critical k? is not arbitrary large, as it
might seem from Fig. 4.

Also provided in Fig. 5 are the arrows which depict how
much the CP solitons jump transversely in the k space in
numerical simulations, after a splitup transition. The left
end of an arrow points to the peak value of k2 in the steady
state; the right end points to the maximum value of the total
transient change in k*. This end evidently complies with
the condition in Eq. (6). The end points are calculated by
independent numerical runs of the full simulations. For the
given control parameters (I' = 4 and L = 5Lp) only single
or double splitup transitions are observed. It is seen that the
arrows provide a qualitative agreement with the form and
the position of the lowest branch of the threshold curve,
which signifies the first splitup transition. It is difficult to
see higher order transitions, because of the intervening
dynamical effects. When I' = 7.17 and L = 5.75Lp, as
in one of the experiments, a complicated dynamical be-
havior is observed, since it lies in the region of intensities
where the threshold curves cross each other and where the
influence of the saturable nonlinearity is the largest. Below
and above this region the dynamics become simpler, and
CP solitons cease to exist. These facts are confirmed
experimentally: CP solitons can exist only in a certain
window of beam intensities.

In conclusion, we have established the existence of 2D
CP vector solitons in an SBN:60Ce PR crystal. We have
displayed their varied dynamical behavior and carried out
numerical simulations that confirm our experimental find-
ings. We have performed LSA that predicted a threshold
for the splitup instability of CP solitons, in qualitative
agreement with numerical simulations.
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