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Dynamic Supersymmetries of Differential Equations with Applications to Nuclear Spectroscopy
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Dynamic supersymmetries of differential equations are defined. The case of a liquid drop with
quadrupole deformation coupled to a particle with j � 3=2 is shown as an example of a situation where
the dynamic supersymmetry OSp�5=4� may occur. A special solution, called E�5=4�, of interest in the
spectroscopy of odd-even nuclei in the transitional region between spherical and gamma unstable is
explicitly worked out.

DOI: 10.1103/PhysRevLett.95.052503 PACS numbers: 21.60.Fw, 21.10.Re, 21.60.Ev
Dynamic supersymmetries, that is, situations in which
the Hamiltonian operator describing a (nonrelativistic)
Bose-Fermi system can be written in terms only of invari-
ant operators of a superalgebra g� and its (graded or not)
subalgebras g� � g0� � g00� � . . . , have played an impor-
tant role in the development of nuclear physics in the last
25 years. Discovered in the early 1980s [1,2], they have
been confirmed recently in a series of experiments per-
formed at various laboratories [3]. The major role of these
symmetries is that of providing a classification scheme for
complex systems [4]. In fact, the more complex the system
is, the more useful the symmetries are, as it is practically
impossible at the present time to calculate ab initio the
properties of these systems.

Dynamic supersymmetries have been so far studied
algebraically by realizing the superalgebra g� in terms of
creation and annihilation operators for bosons and fermi-
ons [4,5]. For other applications of this concept, it is of
interest to study dynamic supersymmetries of differential
equations, D � E , where D is the differential operator
representing the Hamiltonian. In this Letter, dynamic
supersymmetries of differential equations are defined,
and a specific example of current interest in nuclear spec-
troscopy, where these situations may occur, is discussed.

In order to study supersymmetries of differential equa-
tions, the superalgebra g� needs to be realized in terms of
coordinates and momenta. A realization, often used in high
energy physics, is in terms of coordinates 
��� �

1; 2; . . . ; n� and momenta @
@
�

for bosons, and Grassmann

coordinates �i�i � 1; . . . ; m;m � even� and momenta @
@�i

for fermions. A generic Hamiltonian for mixed systems of
bosons and fermions is
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�

�;

@
@
�

�
�HF

�
�i;

@
@�i

�

� VBF

�

�;

@
@
�

; �i;
@
@�i

�
: (1)

Dynamic supersymmetries of the differential equation (1)
can then be defined in the usual way, as those situations in
which the Hamiltonian H can be written in terms of
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Casimir invariants of a superalgebra g� and its (graded or
not) subalgebras g� � g0� � � � � .

The use of Grassmann variables in the solution of the
differential equation H � E is rather complex. A sim-
pler realization, often used in quantum mechanics, is in
terms of coordinates and momenta for the elements of the
bosonic algebra and in terms of m	m matrices, m �
even, for the elements of the fermionic algebra (for spin
j � 1=2 particles, the Pauli matrices). In the application
described in the paragraphs below, the latter realization
will be used.

A nontrivial example of supersymmetry of differential
equations is the case of a liquid drop with quadrupole
deformation 
��� � 0;
1;
2� coupled to a particle
with spin 3=2. The differential equation for this case can
be cast into a simple form by noting that the coordinates
and momenta of the drop, 
�, @

@
�
, transform as the vector

representation �1; 0� of the five-dimensional rotation group
SO�5�, while the four components mj � 
 1

2 ;

3
2 of the

spin 3=2 particle transform as the representation �1; 0� of
the symplectic group Sp�4� [6], or conversely as the spinor
representation �12 ;

1
2� of SO�5�. [When spinor representa-

tions are included, the corresponding group is called
Spin�5� [1]. Details of the group theoretic description
will be omitted from this Letter and will be given in a
subsequent longer publication.] The Hamiltonian for the
drop, the particle, and their interaction isH � HB �HF �
VBF. Consider now the case in which the Hamiltonian HB
of the drop is the Bohr Hamiltonian [7] in coordinates�, �,
#i�i � 1; 2; 3�, with a �-independent potential V���.
Furthermore, let the Hamiltonian HF of the particle be a
constant (chosen to be zero), and let the interaction VBF
between the drop and the particle be a Spin�5� scalar. This
interaction is written as � 
L, a five-dimensional ‘‘spin-
orbit’’ interaction, generalization of the familiar three-
dimensional spin-orbit interaction � � ‘. (Note, however,
the difference between the five-dimensional dot product 

and the three-dimensional dot product �.) The 10 matrices
	�� are the 4	 4 matrices of Sp�4�, tabulated in [8], while
L�� � 
�

@
@
�

� 
�
@
@
�

are the 10 components of the five-

dimensional angular momentum. The coefficient in front
of the dot product is taken to be � independent. The
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explicit form of H is
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(The constant 5
2 has been added for convenience.) This

equation is the generalization to five dimensions of the
familiar equation of a spin 1=2 particle in a central poten-
05250
tial and can be solved with standard techniques. In particu-
lar, a dynamic Bose-Fermi symmetry of this equation will
occur whenever H can be written in terms of invariant
Casimir operators. This will happen when the function
g��� � k "2

2B�2 , where k is an arbitrary constant. Under

the circumstances described above, the eigenvalue equa-
tion H
 � E
 can be separated by writing


 � F������; #i; "�: (3)

Here " represents generically the coordinates of the spin
3=2 particle. The wave function � is obtained by coupling
the wave function of the drop ’ with that of the particle $
��%1;1=2�;��;J;MJ
�

X
‘;m‘

� �%; 0� �12 ;
1
2� j �%1;

1
2�

‘ 3
2 j J

�� ‘ 3
2 j J

m‘ mj j MJ

�
’�%;0�;��;‘;m‘

��; #i�$�1=2;1=2�;0;3=2;mj
�"�: (4)
The symbols represent Clebsch-Gordan coefficients for the
chain Spin�5� � Spin�3� � Spin�2� tabulated in [4] (see
p. 49). The wave functions are labeled by the representa-
tions of Spin�5�, with the quantum numbers
�%1; %2�; ��; J;MJ discussed in [4]. Insertion of Eq. (3)
into Eq. (2) gives the equation for F���:�
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with

� � %�%� 3� � k
�
%1�%1 � 3� �

3

4
� %�%� 3�

�
: (6)

For applications to spectroscopy, it is also important to
compute electromagnetic transition rates. Particularly in-
teresting are the matrix elements of the electromagnetic
transition operators. These operators can be written in the
generic form

T � TB�
�� � TF�"�: (7)

In the case described here of a drop coupled to a particle
with spin 3=2, the quadrupole transition operator has con-
tributions both from the drop, t
�, and the single particle,
written as t0Y2�. One notes again that 
2� transforms as the
representation �1; 0� of SO�5�. Bayman and Silverberg [6]
showed years ago that the single particle contribution Y2�
transforms as the representation �1; 1� of Sp�4�, or con-
versely the representation �1; 0� of Spin�5�. Thus

T�2�
� � t�T�1;0�;0;2;���; #i� � t0T�1;0�;0;2;��"�: (8)

The tensorial character of T�2� under Spin�5� can be used
to perform the calculation of the angular part ��; �i; "�.
This calculation was already done using algebraic methods
[9]. The only remaining part is the � part. This is done by
evaluating the integrals

I,;%1;,0;%01 �
Z 1

0
�F,;%1���F,0;%01����

4d� (9)
for the contribution of the drop and a similar integral
without the first factor � for the single particle.

The explicit form of the equation in the � variables
shows that among the possible dynamic Bose-Fermi sym-
metries of differential equations there is that in which
V��� � �2, for, in that case, the eigenvalue problem can
be solved in explicit analytic form. This case is of interest
in nuclear spectroscopy, but it will not be discussed here.
Instead, I note that the method introduced here can be used
to provide a solution to another problem of current interest.
Recently, a new concept has been introduced, called ‘‘criti-
cal symmetry’’ [10]. One attempts to describe, in explicit
analytic form, the situation in which a physical system is at
the critical value of a (shape) phase transition. The method
discussed here can be used to study situations in which a
spin 3=2 particle is coupled to a system at the critical value
of the phase transition between spherical and �-unstable
shape. At this point, the potential V��� is flat and can be
approximated by a five-dimensional square well, V��� �
0, for � � �W , and V��� � 1, for �> �W [10]. The
eigenvalue problem for this case, which has Bose-Fermi
symmetry Spin�5�, can be solved in explicit form. The
solutions of Eq. (2) are given in terms of Bessel functions

of order � �
													
�� 9

4

q
. (For k � 1, � �

																															
%1�%1 � 3� � 3

p
.)

They can be written as F,;%1��� �
c,;%1�

�3=2J��x,;%1�=�W�, where c,;%1 is a normalization
constant. The boundary condition at � � �W determines
the eigenvalues to be

E �
@
2

2B

�x,;%1
�W

�
2
; (10)

where x,;%1 is the ,th zero of J��z�. The spectrum when
k � 1 is given in Fig. 1. It should be noted that, when k �
1, energies are given in terms of only an overall scale. The
values of the angular momenta contained in each multiplet
%1 are given by the reduction Spin�5� � Spin�3� and are
tabulated in [4] (see p. 43).
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The calculation of the matrix elements of the transi-
tion operators is also straightforward. One needs to
evaluate the integrals I,;%1;,0;%01 � c,;%c,0;%01

R
1
0 �

2 	

J��x,;%1�=�W�J�0 �x,0;%01�=�W�. The transition strengths,
when the contribution of the single particle is negligible
�t0 � 0�, are shown in Fig. 1. Here, the B�E2; J ! J0� �
jhJ k T�2� k J0ij2=�2J� 1� values are shown. Again, all
B�E2� values are given in terms of only an overall scale,
t. Generalization to t0 � 0 is straightforward.

The five-dimensional square well with a five-
dimensional spin-orbit interaction provides an example
of the dynamical Bose-Fermi symmetry Spin�5�. For
each , � 1; 2; . . . , one has a series of multiplets charac-
terized by the Spin�5� quantum numbers �%1;

1
2�, with %1 �

1
2 ;

3
2 ; . . . . It is of interest to compare the spectrum and

electromagnetic rates with those of the five-dimensional
well without the spin-orbit interaction given in [10]. For
each , � 1; 2; . . . , one has a series of multiplets charac-
terized by the Spin�5� quantum numbers �%; 0�, with % �
0; 1; . . . . The two solutions can be combined into a single
solution by introducing the representations of the super-
group OSp�5j4�, which is then the dynamic supersymme-
try of the problem. For each ,, states are labeled by
representations of OSp�5j4�. The five-dimensional square
well was denoted in [10] by E�5�. The combined solution
FIG. 1. The lowest portion of the spectrum of a j � 3=2 particle
spin-orbit interactions. Energies are in units of the energy of the first
for the transition from the multiplet , � 1, %1 �

3
2 to the ground sta

should be reversed.
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will be denoted here E�5j4�. Its spectrum is shown in Fig. 2.
Supersymmetry relates the energy and B�E2� scales for the
even [panel (a)] and odd [panel (b)] systems. In particular,
the (odd/even) ratio of energy scales is 1.066 and of B�E2�
scales is 1.121. Since the explicit construction ofOSp�5j4�
cannot be done easily in the mixed realization coordinates-
matrices employed here, but requires the introduction of
Grassmann variables, its presentation will be postponed to
a longer publication.

The solution of the five-dimensional square well coupled
to a j � 3=2 particle can be used to study spectra of odd-
even or even-odd nuclei at the critical value of the spherical
to �-unstable transition. However, even more here than in
the case of even-even nuclei, the degeneracy of the %
mulitplets is broken by additional interactions and one
thus needs, for a direct comparison with the data, a con-
sideration of these interactions. In analogy with its alge-
braic counterpart, it is also possible here to introduce
additional interactions which are diagonal in the chain
Spin�5� � Spin�3�, through a three-dimensional spin-
orbit interaction, k0g����2s � ‘� ‘2 � s2�. This interaction
is diagonal with eigenvalue / J�J� 1�. The solution re-
mains the same but with ��%�%�3��k�%1�%1�3�� 3

4�

%�%�3���k0J�J�1�. For k � 1, � � %1�%1 � 3� � 3
4 �

k0J�J� 1�. The solutions now depend on the parameter k0.
in a five-dimensional infinite square well with five-dimensional
multiplet, , � 1, %1 �

3
2 . B�E2� values are in units of the B�E2�

te , � 1, %1 �
1
2 . A d3=2 particle is shown. For p3=2, all parities
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FIG. 2. The combined bosonic and fermionic spectra in E�5j4�. The energy scales for even-mass and odd-mass nuclei are related by
supersymmetry, as are the B�E2� scales (see text).
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A search for experimental examples of E�5j4� should
concentrate on regions where the adjacent even-even nu-
cleus is undergoing a spherical to �-unstable transition,
E�5�, and the single particle (proton or neutron) occupies a
level with j � 3=2. An example of E�5� has been found in
134Ba [11]. States in 133Ba built on the single particle
neutron level d3=2 are possible candidates. Also, in 1984,
Bijker and Kota [12] showed that 63Cu (an odd proton
nucleus with the single particle in the p3=2 level) is an
example of Spin�5� symmetry in which a j � 3=2 particle
is coupled to a spherical even-even nucleus. The situation
in this nucleus should be readdressed in light of the present
development. The crucial measurement that distinguishes
the two situations is that of the B�E2� value connecting the
state , � 2, %1 � 1=2 with the ground state , � 1, %1 �
1=2. In E�5j4�, this B�E2� value is small (see Fig. 1), while
in the case described in [12] its value is 100.

Finally, the method presented here can be used for other
physical systems at a critical point of a second order shape
phase transition. The solution for a three-dimensional
square well with a spin 1=2 particle can be used to study
electrons in van der Waals molecules [13]. The Bose-Fermi
symmetry of the three-dimensional equation is Spin�3�
and the supersymmetry is OSp�3j2�. The square well can
be denoted by E�3j2�. Also, a situation similar in spirit to
that discussed here, described by the group OSp�1j2�, was
considered years ago by Balantekin et al. [14]. In all these
applications, the compact supergroup OSp�njm� describes
the degenerate multiplets (Fig. 2). Another use of
OSp�njm� in nuclear spectroscopy was done years ago,
but using the noncompact supergroup OSp�njm;R� to
describe seniority supermultiplets [15].

The important new result of the present Letter is to have
extended the concept of critical symmetry to critical su-
persymmetry, and, in doing so, provide a benchmark for
the study of odd-even nuclei (and other mixed fermionic-
05250
bosonic systems) in the most difficult situation in which the
system is undergoing a phase transition between two dif-
ferent phases (shapes).

This work was performed in part under DOE Grant
No. DE-FG-02-91ER40608. I wish to thank Mark Caprio
and Rick Casten for a critical reading of the manuscript.
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