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An excellent description of both spin-independent and spin-dependent quark distributions and structure
functions has been obtained with a modified Nambu—Jona-Lasinio model, which is free of unphysical
thresholds for nucleon decay into quarks—hence incorporating an important aspect of confinement. We
utilize this model to investigate nuclear medium modifications to structure functions and find that we are
readily able to reproduce both nuclear matter saturation and the experimental F%y /F,y ratio, that is, the
European Muon Collaboration (EMC) effect. Applying this framework to determine g?p, we find that the
ratio gfl‘p /g p differs significantly from unity, with the quenching caused by the nuclear medium being
about twice that of the spin-independent case. This represents an exciting result, which, if confirmed
experimentally, will reveal much about the quark structure of nuclear matter.
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The discovery in the early 1980s by the European Muon
Collaboration (EMC) that nuclear structure functions differ
substantially from those of free nucleons [1-3] caused a
shock in the nuclear community. Despite many attempts to
understand this effect in terms of binding corrections it has
become clear that one cannot understand it without a
change in the structure of the nucleon-like quark clusters
in matter [4—6]. Mean-field models of nuclear structure
built at the quark level, which have been developed over
the past 15 years, are yielding a quantitative description of
the EMC effect. Most recently it has been demonstrated
that at least one of these models leads naturally to a
Skyrme-type force, with parameters in agreement with
those found phenomenologically to describe a vast amount
of nuclear data [7].

A second major discovery by the EMC concerned the so-
called “spin crisis” [8], which corresponds to the discov-
ery that the fraction of the spin of the proton carried by its
quarks is unexpectedly small. This has led to major new
insights into the famous U(1) axial anomaly, prompting
many new experiments. With this background, it is aston-
ishing that, in the 17 years since the discovery of the spin
crisis, there has been no experimental investigation of the
spin-dependent structure functions of atomic nuclei. Of
course, such experiments are more difficult because the
nuclear spin is usually carried by just a single nucleon and
hence the spin dependence is an O(1/A) effect. Neverthe-
less, as we shall see, such measurements promise another
major surprise, with at least one model—which repro-
duces the EMC effect in nuclear matter—suggesting a
modification of the spin structure function of a bound
proton in nuclear matter roughly twice as large as the
change in the spin-independent structure function.

Models of nuclear structure like the quark meson cou-
pling (QMC) model, achieve saturation through the self-
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consistent change in the quark structure of the colorless,
nucleon-like constituents—in particular, through its scalar
polarizability [7,9]. Physically the idea is extremely sim-
ple, light quarks respond rapidly to oppose an applied
scalar field. Specifically, the lower components of the
valence quark wave functions are enhanced and this in
turn reduces the effective oN coupling. The fact that
changes in the structure of bound nucleons are so difficult
to find appears to be a result of this mechanism being
extremely efficient and hence yielding only a small change
in the dominant upper components of the valence quark
wave functions.

On the other hand, the spin structure functions are
particularly sensitive to the lower components and this is
why the measurement of the spin-dependent EMC effect is
so promising. Our calculations are made within the frame-
work developed by Bentz, Thomas, and collaborators
[10,11], in which proper-time regularization [12—14] is
applied to the Nambu—Jona-Lasinio (NJL) model in order
to simulate the effects of confinement. This model exhibits
similar properties to the QMC model with the advantage
that it is covariant. Once we include both scalar and axial-
vector diquarks, it readily describes nuclear saturation at
the correct energy and density. Moreover, it yields parton
distribution functions for the free nucleon [15] which are in
excellent agreement with existing experimental data.

We write the spin-dependent light-cone quark distribu-
tion of a nucleus with mass number A and helicity H as the
convolution

AfA ) = [y [ dxotey = yu)
X Afon@ALD, 5a), (1)

where Af,/y(x) is the spin-dependent quark light-cone
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momentum distribution in the bound nucleon, A f%)A (ya)

is the light-cone momentum distribution of the nucleon in
the nucleus, and x, € [0, A]is the Bjorken scaling variable
for the nucleus. There have been numerous investigations

of A fz(é{/)A (y4) [16] and it is straightforward to calculate for
any particular nucleus. Examples of greatest experimental
interest would be single proton particle or hole states like
Li, '"B and >N. In this analysis, as our primary focus is
the change in Af,/y in medium, we incorporate the Fermi
motion effects on the bound proton structure function by
replacing A f%)A(yA) with the spin-independent distribu-
tion fy/4(y4), calculated in infinite nuclear matter [11].

To calculate Af,,/y(x) in our model, it is convenient to
express it in the form [17,18]

d*k k_

Mo =i [ 5 8(2= = Ty ysMp ] @
where M(p, k) is the quark two-point function in the nu-
cleon. Within any model that describes the nucleon as a
bound state of quarks, this distribution function can be
associated with a straightforward Feynman diagram calcu-
lation, where the propagators include the self-consistent
scalar and vector fields in the nucleus.

It is demonstrated in Ref. [11] that the in-medium
changes to a free nucleon quark distribution can be in-
cluded as follows. The effect of the scalar field is incorpo-
rated by simply replacing the free masses with the effective
masses in nuclear medium, giving the distribution
Af,/no(x) ,and the Fermi motion of the nucleon is included
by convoluting this distribution (A f,,/yo(x)) with the Fermi
smearing function, fy/40(¥4), producing the distribution

Afga0(Fa) = [dyA /d25(iA — 42)
X Af an0(2) fnja0(Fa)- 3)

The effect of the vector field is then incorporated via the

scale transformation
€ - e V
Afga(xa) = E_I;qu/AO<xA = E—ZXA - E—I(i) 4

where e = 4/p% + M3 + 3V, = Ep + 3V, is the Fermi
energy of the nucleon, py the Fermi momentum and Vj, is
the zeroth component of the vector field felt by a quark.
To calculate the spin-dependent quark distribution in the
nucleon, A f,/yo(x), we use the NJL model to describe the
nucleon as a quark-diquark bound state, taking into ac-
count both scalar J” = 0%, T = 0, color 3 and axial-vector
J™=1%,T =1, color 3 diquark channels. Details of these
free space calculations, along with a description of the
proper-time regularization scheme used throughout this
paper, may be found in Ref. [15]. In short, the quark
distribution functions are determined from the Feynman
diagrams of Fig. 1, with the resulting distribution
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FIG. 1 (color online). Feynman diagrams representing the
spin-dependent quark distributions in the nucleon, needed to
determine Af,/y(x), given in Eq. (2). The single line represents
the quark propagator and the double line the diquark # matrix.
The shaded oval denotes the quark-diquark vertex function and
the operator insertion has the form y*ys;6(x — ;—:)%(1 * 7).
The second diagram, which we refer to as the ‘“‘diquark dia-
gram,” symbolically represents two diagrams, each with the
operator insertion on a different quark line within the diquark.

Af4/no(x), having no support for negative x. Hence, this
is essentially a valence quark picture.

By calculating these Feynman diagrams using the effec-
tive (density dependent) masses obtained from the nuclear
matter equation of state (discussed below) and performing
the transformation, Eq. (4), to include the mean vector
field, we obtain the spin-dependent u and d distributions
in a bound proton. Separating the isospin factors gives

Aul(x) = Af;/N(x) + %Af;(D)/N(x) + %AfZ/N(x)

5 1
+ 6 AfZ(D)/N(x) + ﬁ Afy(p)/N(x)» )

1 ; 2 a 1 a
Ady() = 5 Af () + AL + £ AfGp) (%)

1
oA A Sy n - (6)

The superscripts s, a, and m refer to the scalar, axial-
vector, and mixing terms, respectively, the subscript ¢/N
implies a quark diagram and ¢(D)/N a diquark diagram.
Because the scalar diquark has spin zero, we have
A Fow)y ~(X) = 0 and hence the polarization of the d quark

arises exclusively from the axial-vector and the mixing
terms.

The NJL model is a chiral effective quark theory that is
characterized by a 4-Fermi contact interaction. Using Fierz
transformations any 4-Fermi interaction can be decom-
posed into various interacting gqg and gg channels [20].
The terms relevant to this discussion are

L =4(if — m)p + G (Jh)* — (PysTh)?)
— G, ((py" ) + -
+ G (ysCry BAYT) (" C L ysmy BAep)
+ G (hy  CTim BT )T C oyt BAY), @)

where m is the current quark mass, B4 = \EAA (A=
2,5,7) are the color 3 matrices and C = iy,7,. In the ¢g
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channel we include scalar, pseudoscalar, and vector com-
ponents and in the gq channel we have the scalar and axial-
vector diquarks. The scalar ¢4 interaction term generates
the scalar field, that is, the constituent quark mass M
(vacuum value M;) via the gap equation. The vector ¢g
interaction will be used to generate the vector field in-
medium. The gg interaction terms give the diquark ¢
matrices whose poles correspond to the masses of the
scalar and axial-vector diquarks. The nucleon vertex func-
tion and mass, My, are obtained by solving the homoge-
neous Faddeev equation for a quark and a diquark [15].
Because we need to solve this equation many times to
obtain self-consistency, we approximate the quark ex-
change kernel by a momentum independent form (static
approximation). This necessitates the introduction of an
additional parameter, c, as explained in Ref. [10].

To calculate the mean scalar and vector fields, we need
the equation of state for nuclear matter. This can be rigor-
ously derived for any NJL Lagrangian using hadronization
techniques, but in a simple mean-field approximation the
result for the energy density has the following form [10]:

V2 dp .
_E_F —®(pF - |p|)8p; (8)

E = gV (277)3

where £, = \/p> + M} + 3V, and the vacuum term &y

has the familiar “Mexican hat” shape.

The parameters of the model are Ak, Ayy, My, ¢, G,
G,, G,, and G, where Ajg and Ay are the infrared and
ultraviolet cutoffs used in the proper-time regularization.
The infrared scale is expected to be of the order Aqcp and
we set it to Ag = 0.28 GeV. We also choose the free
constituent quark mass to be My = 400 MeV [21] and
use this constraint to fix the static parameter, c. The re-
maining six parameters are fixed by requiring f, =
93 MeV, m, = 140 MeV, M, = 940 MeV, the saturation
point of nuclear matter (pg, Eg) = (0.17fm ™3, 15.7 MeV),
and lastly the Bjorken sum rule at zero density to be
satisfied, with g4, = 1.267. We obtain Ayy = 0.66 GeV,
c=095GeV, G, =1781 GeV™?, G, =841 GeV?,
G, =136 GeV 2% and G, = 5.58 GeV 2.

With these model parameters the diquark masses at zero
density are M, = 0.65 GeV and M, = 1.2 GeV and vec-
tor field strength is V; = 0.044 GeV. At saturation density
the effective masses become M* = 0.32 GeV, M; =
0.52 GeV, M, = 1.1 GeV, and My = 0.75 GeV.

The results for the u and d spin-dependent quark dis-
tributions, at the model scale, are presented in Fig. 2. There
are four curves for each quark flavor, representing the
different stages leading to the full nuclear matter result.

Using these quark distributions we are able to construct
the structure functions, g;, and g?p, where the superscript
A represents a structure function in the nuclear medium.
Analogous results for the spin-independent quark distribu-
tions [15] allow us to determine the isoscalar structure
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FIG. 2 (color online). Spin-dependent quark distributions, Au,,
and Ad,, at the model scale, Q3 = 0.16 GeV>. There are four
curves for each quark flavor, with the positive curves represent-
ing the up distributions. The dotted line is the free nucleon
distribution, the dot-dashed line illustrates the effect of replacing
the free masses with the effective ones. This distribution con-
voluted with the Fermi smearing function, Eq. (3), is presented
as the dashed line, and the final result where the vector field is
also included via the scale transformation, Eq. (4), is represented
by the solid line.

functions F,y and F3y, and hence determine the EMC
effect. Evolving [22] these distributions to a scale of
10 GeV?, we give in Fig. 3 our results for the ratios
Fiy/Foy and gi‘p/glp, that is, the EMC and the polarized
EMC effect. In the valence quark region, the model is able
to reproduce the spin-independent EMC data extremely
well. For the polarized ratio we find a significant effect,
of the order twice the size of the unpolarized EMC effect.

The nuclear quenching effects on the individual quark
flavors is presented in Fig. 4. We find that the effect on both
the u and d distributions is large and approximately equal
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FIG. 3 (color online). Ratios of the spin-independent and spin-
dependent nuclear to nucleon structure functions at nuclear
matter density. The top curve is the usual EMC ratio Fay/Fay,
where F,y is the isoscalar structure function and the superscript
A represents the in-medium result. The EMC data for nuclear
matter are taken from Ref. [23]. Our prediction for the polarized
EMC effect, g’l‘p /& p» 18 the lower curve.
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FIG. 4 (color online). Ratio of the quark distributions in nu-
clear matter to the corresponding free distributions, at a scale of
0? = 10 GeV?. The solid line represents Au“(x)/Au(x) and the
dot-dashed line Ad“(x)/Ad(x). Note, these distributions are the
full quark distributions and hence include antiquarks generated
through Q2 evolution.

over the valence quark region. The resemblance between
gf,‘p /81, and the ratio Au*(x)/Au(x) is simply because the
up distribution is enhanced by a factor of 4 relative to the
down and strange distributions in proton structure func-
tions. Absent from our model is the U(1) axial anomaly
and sea quarks (at the model scale), which prevents a
reliable description of structure functions at low x. For
this reason in Figs. 3 and 4 we do not plot our results in
this region.

A thorough understanding of how nuclear medium ef-
fects arise from the fundamental degrees of freedom—the
quarks and gluons—represents an important challenge for
the nuclear physics community. An experimental measure-
ment of the polarized EMC effect would be another im-
portant step toward this goal, providing important insights
into the quark polarization degrees of freedom within a
nucleus. Our prediction of a remarkably large signature
suggests that this measurement is feasible, and if these
results are confirmed experimentally would yield vital
new information on quark dynamics in the nuclear
medium.
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