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Accurate Determinations of �s from Realistic Lattice QCD
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We obtain a new value for the QCD coupling constant by combining lattice QCD simulations with
experimental data for hadron masses. Our lattice analysis is the first to (1) include vacuum polarization
effects from all three light-quark flavors (using MILC configurations), (2) include third-order terms in
perturbation theory, (3) systematically estimate fourth and higher-order terms, (4) use an unambiguous
lattice spacing, and (5) use an O�a2�-accurate QCD action. We use 28 different (but related) short-distance
quantities to obtain ��5�

MS
�MZ� � 0:1170�12�.
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An accurate value for the coupling constant �s in quan-
tum chromodynamics (QCD) is important both for high-
energy phenomenology, and as an input for possible theo-
ries beyond the Standard Model. Numerical simulations of
QCD using lattice techniques, when combined with ex-
perimental data for hadron masses, have provided some of
the most accurate values for the coupling constant [1]. The
precision of these determinations has been limited, how-
ever, by two factors. One was our inability to include the
effects of realistic light-quark vacuum polarization in QCD
simulations. The other limitation was the lack of third and
higher-order terms in the perturbative expansions used to
extract �s. In this paper we present the first lattice QCD
determination of the coupling constant that includes real-
istic vacuum polarization effects from all three light
quarks, and perturbation theory through the third order,
with systematic estimates of the fourth order and beyond.
Consequently, our final results are, by far, the most accu-
rate from lattice QCD and among the most accurate from
any method. This work uses gluon configurations from the
MILC collaboration [2], and builds on a joint effort by
several groups [3].

Effects from light-quark vacuum polarization are quan-
titatively important, but also very costly to simulate.
Previous simulations included contributions from only u
and d quarks, no s quarks, and used quark masses that were
10 times too large or larger. Our analysis includes effects
from all three light quarks, with much smaller u and d
masses—so small that our results become effectively mass
independent. This is possible because of a new discretiza-
tion of the light-quark action [3]. Heavy-quark polarization
is negligible and is ignored here [4].

The Lorentz-noninvariant ultraviolet regulator greatly
complicates high-order perturbation theory in lattice
QCD. To manage this complexity, we automated the gen-
eration of Feynman integrands using computers, and eval-
uated the Feynman integrals numerically on large-scale
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parallel computers. These techniques allowed us to evalu-
ate perturbative coefficients through the third order [5].

To extract the coupling constant from our lattice QCD
simulation, we (with our collaborators) first tuned the
theory’s five parameters to reproduce experiment for five
well-measured quantities; the details are in [3]. We used
lattices that were approximately 2.5 fm on a side with three
different lattice spacings a, where a�1 was 1.144(31),
1.596(30), and 2.258(32) GeV. The s quark masses we
used for each of the three lattice spacings were 0:082=a,
0:05=a, and 0:031=a, respectively. We used u and dmasses
as small as ms=5, except on the coarsest lattice where we
used ms=10. The gluon configurations were produced us-
ing an improved gluon action and the new light-quark
action. Our coupling-constant analysis is the first to use
O�a2�-accurate actions.

The lattice spacing a is one of the five simulation
parameters, and the most important in our analysis because
it sets the simulation’s mass scale. In our earlier �s analy-
ses, we set the lattice spacing by comparing a simulated 

mass splitting (e.g., 
0 �
) with experiment. Here we
continue this practice, but, for the first time, the lattice
spacings derived from our 
 splitting have been shown to
agree with spacings derived from a wide variety of other
physical quantities: ten in all, including the pion and kaon
leptonic decay constants, the Bs mass, and the � baryon
mass [3,6]. All of these different quantities agree on the
lattice spacing to within 1.5–3%.

Having an accurately tuned simulation of QCD, we used
it to compute nonperturbative values for a variety of short-
distance quantities, each of which has a perturbative ex-
pansion of the form

Y �
X1
n�1

cn�nV�d=a� (1)

where cn and d are dimensionless a-independent constants,
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and �V�d=a� is the (running) QCD coupling constant, for
nf � 3 flavors, in the V scheme [7,8]. Given the coeffi-
cients cn, we determine �V�d=a� such that the perturbative
formula for Y reproduces the nonperturbative value from
the simulation.

We computed cn for n � 3 using Feynman diagrams.
We estimated higher-order coefficients by simultaneously
fitting results from different lattice spacings to the same
perturbative formula. This is possible because the coupling
�V�d=a� changes value with different lattice spacings a:

q2
d�V�q�

dq2
� ��0�2

V � �1�
3
V � �2�4

V � �3�
5
V � � � �

(2)

where the �i are constants [8]. We parameterize the run-
ning coupling in our fits by its value at a specific scale—
�0 	 �V�7:5 GeV�—and integrate Eq. (2) numerically to
obtain values at other scales.

We used a constrained fitting procedure, based upon
Bayesian methods, for our fits [9]. Given simulation results
Yi 
 �Yi for three different lattice spacings �ai 
 �ai , we
minimized an augmented �2 function,

�2 	
X3
i�1

�Yi ��ncn�
n
V�d=ai��

2

�2
Yi

�
X10
n�1

�cn � �cn�
2

�2
cn

�
�log��0� � log��0��

2

�2
log��0�

�
X3
i�1

�ai � �ai�
2

�2
ai

; (3)

by varying �0, and the cn and ai. Terms after the first in �2

are ‘‘priors’’ that constrain the fit parameters to a reason-
able range. The fits explored values of cn, for example,
centered around �cn with a range specified by �cn . For n �

3, we set �cn to the values obtained from our numerical
evaluations of the relevant Feynman diagrams, with �cn
equal to the uncertainties in those evaluations. We set �cn �
0 for 4 � n � 10, and �cn � �c where �c was determined
using the empirical Bayes procedure described in [9].
(Typically this procedure set �c somewhat larger than the
optimal value found for jc4j.) We ignored terms with n >
10. The prior constraint on the coupling constant, �0, was
0:20�0:20

�0:10, or equivalently �1:6
 0:7 for log��0�; it had
negligible impact on the fits.

The simplest short-distance quantities to simulate are
vacuum expectation values of Wilson loop operators,

Wmn 	
1

3
h0jRe Tr Pe�ig

H
nm
A�dxj0i; (4)

where P denotes path ordering, A� is the QCD vector
potential, and the integral is over a closed ma� na rect-
angular path. Wilson loops are perturbative when ma and
na are small. We computed perturbative coefficients for six
small loops [5], ‘‘measured’’ them nonperturbatively in
simulations with each of our three lattice spacings, and
did fits to perturbation theory for each loop. We also
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evaluated Wilson loops for two nonplanar paths [5]:

The fits revealed that high-order coefficients in the
Wilson loop expansions are larger than we expected:, for
example, we find

logW11 � �3:068�V�3:33=a��1� 1:068�V � 1:69�4��2
V

� 5�2��3
V � 1�6��4

V � � ��;

(6)

logW12 � �5:551�V�3:00=a��1� 0:858�V � 1:72�4��2
V

� 5�2��3
V � 1�6��4

V � � ��:

(7)

The large 5�3
V corrections are needed if perturbation the-

ory is to agree with simulation results for all three lattice
spacings. The coupling �V�3:33=a� ranges between 0.21
and 0.29 for our lattice spacings, so 5�3

V is 5–12% of the
full result. Each Wilson loop we examined had corrections
of order this size.

These large coefficients reduce the accuracy of our final
results. There are two ways to reduce the size of these
coefficients. One is to ‘‘tadpole improve’’ Wmn by dividing
by u2�n�m�0 where u0 	 �W11�

1=4 [7]. The other is to exam-
ine Creutz ratios of the loops rather than the loops them-
selves [7]. Each procedure significantly reduces the high-
order coefficients we obtain when we refit to results from
our three lattice spacings: for example,

log
�
W12

u60

�
� 0:949�V�1:82=a��1� 0:160�2��V

� 0:54�8��2
V � 2�1��3

V � 0�2��4
V � � ��; (8)

log
�
W13

W22

�
� �1:323�V�1:21=a��1� 0:39�1��V

� 0:3�2��2
V � 2�1��3

V � 0�2��4
V � � ��: (9)

These expansions are typical of the 7 tadpole-improved
loops and 6 Creutz ratios that we examined. Each has
smaller �3

V coefficients, but also significantly smaller
scales for the �Vs. Over our range of lattice spacings,
�V�1:21=a�, for example, ranges between 0.33 and 0.68,
and therefore 2�3

V is 7–60% of the final result depending
upon the lattice spacing. Consequently results from these
quantities are not significantly more accurate than those
from Wilson loops. Results from the coarsest lattices, with
large �Vs, carry the least weight in our fits.

We also examined the static-quark potential, which is
perturbative at short distances. The continuum potential
has a particularly simple form in the V scheme:
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V�r� � �CF
�V�0:5614=r�

r

�
1�

�2
0

48
�2
V � � � �

�
(10)

where CF � 4=3 and �0 � 11� 2nf=3. On the lattice we
examined the quantity V�r� � V�a� since lattice artifacts
cancel almost completely in the difference. We computed
and removed the small residual lattice artifacts in V�r� �
V�a� through the second order in perturbation theory, and
fit the resulting potential with the continuum formula;
higher-order lattice artifacts are negligible here.
Continuum perturbation theory for V�r� � V�a� becomes
nonanalytic, however, in the fourth order, with the appear-
ance of terms proportional to �4

V log��V� [10]. log��V� is
small for our range of �Vs, so we see no evidence of it in
our fits. Nevertheless, the presence of such terms suggests
0.115 0.117 0.119

α
(5)
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FIG. 1. Values for the 5-flavor �MS at the Z mass from each
short-distance quantity. The dashed lines indicate our final result,
0.1170(12) (�2 per data point is 0.77).
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that our results from the potential may not be as reliable as
those from our other quantities. We limited our analysis to
r � 3a as otherwise the �V scales become too small
(< 1=a). For the same reason, we discarded results for
the potential from the coarsest lattice.

Finally, we extracted the coupling directly from the
tadpole-improved bare lattice coupling, �lat=W11, which,
like Wilson loops, has large fourth-order coefficients.

We extracted values for the 3-flavor coupling, �0 	
�V�7:5 GeV�, from fits to each of our 28 short-distance
quantities. To facilitate comparison with other determina-
tions, we converted our results from the V scheme to the
MS scheme [8], added c and b quark vacuum polarization
(perturbatively [11], using quark masses of 1.25(10) and
4.25(15) GeV [12]), and evolved to the Z mass. The results
from the different quantities are shown in Fig. 1.

While they are derived from the Wilson loops, our
Creutz ratios and tadpole-improved loops provide
coupling-constant information that is largely independent
of that coming from the loops. This is because the highly
ultraviolet contributions that dominate the loops largely
cancel in the other quantities, making the latter far more
infrared (cf., �d=a�s for loops and ratios). Our 28 separate
determinations of the scale parameter probe a wide range
of different length scales, have very different sensitivities
to potential nonperturbative errors, and, as we have dis-
cussed, have very different perturbative expansions. The
agreement, to within our errors, of all 28 determinations is
strong evidence that we have correctly identified and con-
trolled the various systematic errors that could have af-
fected our analysis.

The weighted average of our 28 determinations gives a
composite result of

��5�

MS
�MZ� � 0:1170�12�; (11)
nf = 3

nf = 00.2
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FIG. 2. Values for �V versus d=a [Eq. (1)] from each short-
distance quantity at each lattice spacing, with (top) and without
(bottom) light-quark vacuum polarization. The dashed lines
show predictions from Eq. (2) assuming �V�7:5 GeV� is
0.2082(40) and 0.1645(14) for nf � 3 and 0, respectively.
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TABLE I. Sources of the uncertainties in our final determina-
tions of the coupling ��5�

MS
�MZ� � 0:1170�12�.

logW11 logW13=W22 V�
���
2

p
a� � V�a�

a�1 0.0007 0.0010 0.0010
c1 . . . c3 0.0001 0.0004 0.0004
cn for n � 4 0.0008 0.0005 0.0004
V ! MS ! MZ 0.0001 0.0001 0.0001
condensate 0.0002 0.0001 0.0001
mu, md, ms 0.0004 0.0001 0.0001
mc, mb 0.0002 0.0002 0.0002
simulation errors 0.0000 0.0000 0.0002
total uncertainty 0.0012 0.0012 0.0012
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or, equivalently,

��3�
V �7:5 GeV� � 0:2082�40�: (12)

Our error estimate here is that of a typical entry in the plot;
combining our results does not reduce errors because most
of the uncertainty in each result is systematic.

Our composite value for the coupling constant agrees
well with the current Particle Data Group world average
value of 0.1187(20) [12], but is somewhat more accurate. It
also agrees within errors with our previous results [1], and
with the preliminary result of the present analysis pre-
sented in [3], where we quoted larger uncertainties because
we lacked values for the c3s.

Realistic vacuum polarization is critical to our result.
Redoing our simulations and analysis, but with no light-
quark vacuum polarization, gives a coupling of 0.0900(4)
rather than 0.1170(12). Evolving to MZ increases the dif-
ference between 0 and 3 light-quark flavors, but the cou-
plings are still 10� apart at 7.5 GeV. This is evident in
Fig. 2 where we plot the �V�d=a�s extracted from our fits,
with and without vacuum polarization, for each quantity
and for each of our lattice spacings separately, but using the
cns from our simultaneous fits to all lattice spacings.

The various sources of uncertainty for different quanti-
ties are elaborated in Table I. The dominant errors come
from three sources. First is the uncertainty in the inverse
lattice spacing a�1, which includes both statistical and
estimated finite-a errors in the simulated upsilon splitting
(0.5–2% depending upon a [13]). Second are residual
uncertainties in the parameters c1 . . . c3 from the numerical
calculation of these coefficients. The final large source of
uncertainty is due to uncertainties in the coefficients be-
yond the third order. This error is greatly reduced because
we fit simultaneously to three lattice spacings; fitting with
just a single lattice spacing, as is usually done, would give
errors 2–5 times larger. We allowed for possible effects
from nonperturbative gluon and quark condensates [14],
but these are negligible. Uncertainties in the c and b
masses, and Monte Carlo simulation errors in the loop
values are negligible. We corrected for the errors in u, d,
and s sea-quark masses by redoing our entire analysis
05200
(loops and lattice spacings) with larger masses and extrap-
olating linearly. This is also negligible; we include an
uncertainty in Table I equal to the correction.

Our coupling-constant analysis uses the most realistic
QCD simulation to date, with, for the first time, vacuum
polarization contributions from all three light quarks,
quark and gluon actions corrected through O�a2�, and
extensive evidence that both the heavy- and light-quark
sectors of the theory have been accurately simulated [3]. It
is the first to use not only third-order accurate perturbation
theory, but also systematic estimates of the fourth order and
higher. Our final results come from 28 different short-
distance quantities, covering almost an order of magnitude
in energy scales. The agreement between our results and
the current world average demonstrates that the QCD of
confinement is the same theory as the QCD of jets; lattice
QCD is full QCD, encompassing both its perturbative and
nonperturbative aspects.
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