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Fast Quantum Algorithm for Numerical Gradient Estimation
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Given a black box for f, a smooth real scalar function of d real variables, one wants to estimate rf at a
given point with n bits of precision. On a classical computer this requires a minimum of d� 1 black box
queries, whereas on a quantum computer it requires only one query regardless of d. The number of bits of
precision to which f must be evaluated matches the classical requirement in the limit of large n.
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FIG. 1. Classically, we could estimate rf using d� 1 func-
tion evaluations according to @f

@xi
’ 
f�x� lêi� � f�x��=l where

êi is the ith normalized basis vector.
We investigate the query complexity of numerically
estimating the gradient of a black box function f: Rd !
R at a given point. We find that gradients can be estimated
on a quantum computer using a single black box query
whereas we require at least d� 1 queries classically. The
algorithm which achieves this can be viewed as a general-
ization of the Bernstein-Vazirani [1] algorithm, which has
been described in other contexts [2–5]. The black box in
this algorithm was always previously described as evaluat-
ing a function over the integers rather than approximating a
continuous function with finite precision. In [2], the ques-
tion as to whether the algorithm could be adapted for any
task of practical interest was presented as an open problem,
which this paper resolves by showing a speedup for gra-
dient estimation, which is a fundamental operation in many
numerical calculations.

For many numerical calculations, black box query com-
plexity is a natural measure of algorithmic efficiency. For
example, function evaluations are frequently the most time
consuming part of solving numerical optimization prob-
lems. An efficient optimization algorithm is therefore one
which uses as few function evaluations as possible [6].

The black box that we consider evaluates some smooth
function f: Rd ! R. It does so with finite precision deter-
mined by the number of bits used to represent x and f�x�.
For simplicity we will discuss gradient estimation at the
origin, since the gradient at other points can be obtained by
trivially redefining f. To estimate rf, in either the classical
or quantum case, one samples f over a region sufficiently
small that expanding f to first order is a good approxima-
tion: f�x� ’ f�0� � x � rf. In the quantum case, the evalu-
ations of f at the different sample points can be done in
superposition, necessitating only a single evaluation of f.

Classically, to estimate rf in d dimensions we need to
evaluate f at least d� 1 times. Suppose the quadratic and
higher terms in f can be neglected, then f�x� � f�0��
x � rf for small x. Each evaluation of f at a given point xi
gives us a linear equation of the form f�0� � xi � rf � fi.
We have d� 1 unknowns [the d components of rf plus
f�0�], thus evaluating f at fewer than d� 1 distinct points
would leave the system of linear equations underdeter-
mined. A natural choice of the d� 1 points which allows
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us to solve this system is 0 and the d points displaced from
0 by a small amount l along each axis, as shown in Fig. 1.
The quadratic and higher terms in f contribute an error to
the gradient estimate which shrinks linearly with l.

In practice, it may be desirable in the classical gradient
estimation algorithm to perform the function evaluations
displaced by 	l=2 from the origin along each dimension.
In this case 2d function evaluations are required instead
of d� 1. @f=@x1 will then be given by 
f��l=2; 0 . . .� �
f��l=2; 0 . . .��=l, and similarly for the other partial deriva-
tives. Inserting the Taylor expansion for f into this expres-
sion shows that the terms quadratic in x cancel, leaving an
error of order l2 and higher, which is the advantage of this
approach.

Now we consider the quantum case. The black box takes
as its input d binary strings, each of length n, along with no
ancilla qubits all initialized to zero. The black box writes
its output into the ancilla qubits using addition modulo
No  2no and preserves the input qubits. This is a standard
technique for making any classical function reversible,
which it must be for a quantum computer to implement it.

The qubit strings which form the input to the black box
represent the components of x in fixed-point notation. We
will choose the components of x to be between �l=2 and
l=2 where l is sufficiently small so that f is approximately
linear throughout this domain. Just as in the classical case
we need some a priori knowledge of how small to make l.
To convert between the values of x 2 Rd and the positive
integers � represented by the qubit strings which are input
to the black box we use x � l

N ��� N
2� where the compo-

nents of � are n-bit integers (0 to N  2n) and N is the
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d-dimensional vector �N;N;N; . . .� which centers the re-
gion being sampled on the origin.

Similarly, the output of the black box represents the
value of f in fixed-point notation. For maximal precision
while using minimal qubits, one must have an order of
magnitude estimate of the range of f in the domain of
interest. In our case the range of f is roughly from f�0� �
Ml=2 to f�0� �Ml=2 whereM is the largest magnitude of
any first partial derivative of f. The integer which gets
added modulo No to the output register will be related to
the real value of f by �

NNo
ml

f�x�
�

(1)

wherem is our estimate ofM and dc denotes rounding to the
nearest integer.

The first step in the quantum gradient estimation algo-
rithm is to create a uniform superposition over inputs by
performing the Hadamard transform on the input registers.
Next, create a ‘‘plane wave’’ state in the output register by
writing 1 into the output register and then performing the
inverse Fourier transform on it. This yields

1������������
NdNo

p XN�1

�1�0

XN�1

�2�0

. . .
XN�1

�d�0

j�1i . . . j�di
XNo�1

a�0

ei2�a=No jai;

or in vector notation

�
1������������
NdNo

p X
�

j�i
X
a

ei2�a=No jai:

Next, use the black box to compute f and add it modulo
N0 into the output register. The output register is in an
eigenstate of addition modulo N0. The eigenvalue corre-
sponding to addition of x is ei2�x=No . Thus by writing into
the output register via modular addition, we obtain a phase
proportional to f. This technique is sometimes called phase
kickback. The resulting state is [7]

1������������
NdNo

p X
�

ei2��N=ml�f
�l=n����N=2��j�i
X
a

ei2�a=No jai:

For sufficiently small l,

�
1������������
NdNo

p X
�

e�i2��N=ml�ff�0���l=N�
���N=2���rfg�j�i

�
X
a

ei2�a=No jai:

Writing out the vector components, and ignoring global
phase, the input registers are now approximately in the
state

�
1�������
Nd

p
X
�1...�d

ei�2�=m�
�1�@f=@x1���2�@f=@x2�������d�@f=@xd��

� j�1ij�2i . . . j�di:
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This is a product state:

�
1�������
Nd

p

�

�X
�1

ei�2�=m��1�@f=@x1�j�1i
�
. . .

�X
�d

ei�2�=m��d�@f=@xd�j�di
�
:

Fourier transform each of the registers, obtaining��������Nm
@f
@x1

	��������Nm
@f
@x2

	
. . .

��������Nm
@f
@xd

	
:

Then simply measure in the computational basis to
obtain the components of rf with n bits of precision.
Because f will, in general, not be perfectly linear, even
over a small region, there also will be nonzero amplitude to
measure other values close to the exact gradient, as will be
discussed later.

Normally, the quantum Fourier transform is thought of
as mapping the discrete plane wave states to the computa-
tional basis states:

1����
N

p
XN
j�0

e2�ijk=Njji ! jki

where 0< k< N. However, negative k is also easily dealt
with, since

1����
N

p
XN
j�0

e�2�ijjkj=N ! jN � jkji:

Thus negative components of rf pose no difficulties for
the quantum gradient estimation algorithm provided that
bounds for the values of the components are known, which
is a requirement for any algorithm using fixed-point
arithmetic.

In general the number of bits of precision necessary to
represent a set of values is equal to log2�r=��, where r is
the range of values, and � is the smallest difference in
values one wishes to distinguish. Thus for classical gra-
dient estimation with n bits of precision, one needs to
evaluate f to

log 2



maxf�minf

ml=2n

�
(2)

bits of precision.
An important property of the quantum Fourier transform

is that it can correctly distinguish between exponentially
many discrete plane wave states with high probability
without requiring the phases to be exponentially precise
[8]. It is not hard to show that if each phase is accurate to
within � then the inner product between the ideal state and
the actual state is at least cos�, and therefore the algorithm
will still succeed with probability at least cos2�.

As shown earlier, the phase acquired by ‘‘kickback’’ is
equal to 2�N

ml f, and therefore, for the phase to be accurate to
within 	�, f must be evaluated to within 	 ml

2�N �. Thus,
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FIG. 2. Comparison between error estimates obtained in the
stationary phase approximation (solid line) and numerical results
(points) for the one dimensional case. On the right the 2nd
derivative remains constant (! � 0:02) and the number of bits
(N) varies, and vice versa on the left.
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recalling that N � 2n,

no � log2



maxf�minf
�ml=2n���=2��

�
: (3)

As an example, if � � �=8, then the algorithm will
behave exactly as in the idealized case with at least 85%
probability, and no will exceed the classically required
precision by 4 bits, for a given value of l. l also differs
between the quantum and classical cases, as will be dis-
cussed later. Thus no differs from the classically required
precision only by an additive constant which depends on �
and l. Because the classical and quantum precision require-
ments grow linearly with n, this difference becomes neg-
ligible in the limit of large n.

The only approximation made in the description of the
quantum gradient estimation algorithm was expanding f to
first order. Therefore the lowest order error term will be
due to the quadratic part of f. The behavior of the algo-
rithm in the presence of such a quadratic term provides an
idea of its robustness. Furthermore, in order to minimize
the number of bits of precision to which f must be eval-
uated, l should be chosen as large as possible subject to the
constraint that f be locally linear. The analysis of the
quadratic term provides a more precise description of this
constraint.

The series of quantum Fourier transforms on different
registers can be thought of as a single d-dimensional
quantum Fourier transform. Including the quadratic term,
the state which this Fourier transform is acting on has
amplitudes

a��� �
1

Nd=2
exp



i2�

�
1

m
� � rf�

l
2mN

�TH�
��
;

where H is the Hessian matrix of f. After the Fourier
transform, the amplitudes should peak around the correct
value of rf. Here we are interested in the width of the
peak, which should not be affected by rf, so for simplicity
rf will be set to 0. The Fourier transform will yield
amplitudes of [9]

~a�k� �
1

Nd
X
�

exp


i2�

�
l

2mN
�TH��

1

N
k � �

��
:

Ignoring global phase and doing a change of variables
(u � �=N),

�
Z 1=2

�1=2
. . .

Z 1=2

�1=2
exp



i2�

�
Nl
2m

uTHu� k � u
��

ddu:

This integral can be approximated using the method of
stationary phase. The gradient of the phase of the integrand
is r� � Nl

2m �H
T �H�u� k but Hessians are symmetric,

so r� � Nl
m Hu� k. Thus (again ignoring global phase),

~a�k� �
 �������������

1
det�NlmH�

q
if 9u 2 Cs:t: Nlm Hu� k � 0

0 otherwise
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where C is the region �1=2< ui < 1=2 8 i. In this
approximation, the peak is simply a region of uniform
amplitude, with zero amplitude elsewhere. Geometrically,
the linear transformation Nlm H applied to the d-dimensional
unit hypercube yields this region.

Since we have set rf � 0, the variance of Nm
@f
@xi

will be

�2
i �

1

detA

Z
D
k2i d

dk

where A �
Nl
m
H

and D is the region of nonzero amplitude. Doing a change
of variables with A as the Jacobian,

�2
i �

1

detA

Z
C
�Ak0�2i detAd

dk0

where C is again the unit hypercube centered at the origin.
In components,

�2
i �

Z
C

�X
j

Aijk
0
j

�
2
ddk0:

The expectation values on a hypercube of uniform
probability are hkikji �

1
12�ij, thus

�2
i �

1

12

X
j

A2
ij �

N2l2

12m2

X
j

�
@2f
@xi@xj

�
2
: (4)

This quadratic dependence on N is just as expected
since, at the end of the computation, the register that we
are measuring is intended to contain N

m
@f
@xi

. Therefore the
uncertainty in @f=@xi is approximately

l

2
���
3

p

���������������������������X
j

�
@2f
@xi@xj

�
2

vuut
independent of N. In the classical algorithm which uses 2d
function evaluations, the cubic term introduces an error of
�� l2

24D3 where D3 is the typical [10] magnitude of third
partial derivatives of f. If the 2nd partial derivatives of f
have a magnitude of approximately D2 then the typical

uncertainty in the quantum case will be �� lD2

��
d

p

2
��
3

p . To
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FIG. 3. On the left, the probability, as numerically calculated,
is shown. The areas of highest probability appear darkest. On the
right, the region of nonzero probability, as calculated in the
stationary phase approximation, is shaded in black.
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obtain a given uncertainty �, lmust be chosen according to

l�

8><
>:
2

�����
6�
D3

q
classical

2
��
3

p
�

D2

��
d

p quantum
:

Recalling Eqs. (2) and (3), the number of bits of preci-
sion to which f must be evaluated depends logarithmically
on l. However, in the limit of large n, the number of bits
will match the classical requirement.

The level of accuracy of the stationary phase approxi-
mation can be assessed by comparison to numerical solu-
tions of example cases. In one dimension, Eq. (4) reduces
to �2 � !2N2

3 where ! � l
2m

@2f
@x2

. Figure 2 displays the close
agreement between numerical results and the analytical
solution obtained using stationary phase.

A two dimensional example provides a nontrivial test of
the stationary phase method’s prediction of the peak shape.
If the Hessian is such that

N
m
H � 0:1

1 1
1 �1


 �

then, according to the stationary phase approximation, the
peak should be a square of side length

��
2

p

10 l with a 45�

rotation. This is in reasonable agreement with the numeri-
cal result, as shown in Fig. 3.

Because this algorithm requires only one black box
query, one might expect that it could be run recursively
to efficiently obtain higher derivatives. Another instance of
the same algorithm would serve as the black box. However,
the algorithm differs from the black box in that the black
box has scalar output which it adds modulo No into the
output register, and it does not incur any input-dependent
global phase. An additive scalar output can be obtained by
minor modification to this algorithm, but the most straight-
forward techniques for eliminating the global phase require
an additional black box query, thus necessitating 2n queries
for the evaluation of an nth partial derivative, just as in the
classical case.

The problem of global phase when recursing quantum
algorithms as well as the difficulties inherent in recursing
approximate or probabilistic algorithms are not specific to
gradient finding but are instead fairly general.

Efficient gradient estimation may be useful, for ex-
ample, in some optimization and rootfinding algorithms.
Furthermore, upon discretization, the problem of minimiz-
ing a functional is converted into the problem of minimiz-
ing a function of many variables, which might benefit from
gradient descent techniques. A speedup in the minimiza-
05050
tion of functionals may in turn enable more efficient solu-
tion of partial differential equations via the Euler-Lagrange
equation. The analysis of the advantage which this tech-
nique can provide in quantum numerical algorithms re-
mains open for further research.
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