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Phase Coherence of an Atomic Mott Insulator

Fabrice Gerbier, Artur Widera, Simon Fölling, Olaf Mandel, Tatjana Gericke, and Immanuel Bloch
Institut für Physik, Johannes Gutenberg-Universität, 55099 Mainz, Germany

(Received 17 March 2005; published 28 July 2005)
0031-9007=
We investigate the phase coherence properties of ultracold Bose gases in optical lattices, with special
emphasis on the Mott insulating phase. We show that phase coherence on short length scales persists even
deep in the insulating phase, preserving a finite visibility of the interference pattern observed after free
expansion. This behavior can be attributed to a coherent admixture of particle-hole pairs to the perfect
Mott state for small but finite tunneling. In addition, small but reproducible kinks are seen in the visibility,
in a broad range of atom numbers. We interpret them as signatures for density redistribution in the shell
structure of the trapped Mott insulator.
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FIG. 1. Absorption images of an ultracold Bose gas released
from an optical lattice, for various lattice depths: (a) 8ER,
(b) 14ER, (c) 18ER, and (d) 30ER.
A fundamental aspect of ultracold bosonic gases is their
phase coherence. The existence of long-range phase co-
herence, inherent to the description of a Bose-Einstein
condensate in terms of a coherent matter wave, was ex-
perimentally demonstrated in interferometric [1–3] or
spectroscopic [4] experiments. More recently, attention
has been paid to fundamental mechanisms that may de-
grade or even destroy long-range coherence, for example,
thermal phase fluctuations in elongated condensates [5–8],
or the superfluid to Mott insulator (MI) transition under-
gone in optical lattices [9–11].

For a Bose-Einstein condensate released from an optical
lattice, the density distribution after expansion shows a
sharp interference pattern [10]. In a perfect Mott insulator,
where atomic interactions pin the density to precisely an
integer number of atoms per site, phase coherence is
completely lost and no interference pattern is expected.
The transition between these two limiting cases happens
continuously as the lattice depth is increased. In the super-
fluid phase, a partial loss of long-range coherence due to an
increased quantum depletion has been observed for lattice
depths below the MI transition [12–14]. Conversely, in the
insulating phase, numerical simulations [15–17] and ex-
periments [10,18]indicate a residual interference, although
long-range coherence and superfluidity have vanished.

In this Letter, we revisit this question of phase coherence
focusing on the insulating phase. We observe that the inter-
ference pattern persists in the MI phase, and that its visi-
bility decays rather slowly with increasing lattice depth.
We explain this behavior as a manifestation of short-range
coherence in the insulating phase, fundamentally due to a
coherent admixture of particle-hole pairs to the ground
state for large but finite lattice depths. In addition, we
also observe reproducible ‘‘kinks’’ in the visibility at
well-defined lattice depths. We interpret them as a signa-
ture of density redistribution in the shell structure of a MI
in an inhomogeneous potential, when regions with larger-
than-unity filling form. Finally, the issue of adiabatic load-
ing in the lattice is briefly discussed.
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In our experiment, a 87Rb Bose-Einstein condensate is
loaded into an optical lattice created by three orthogonal
pairs of counterpropagating laser beams (see [10] for more
details). The superposition of the lattice beams, derived
from a common source at a wavelength �L � 850 nm,
results in a simple cubic periodic potential with a lattice
spacing d � �L=2 � 425 nm. The lattice depth V0 is con-
trolled by the laser intensities, and is measured here in units
of the single-photon recoil energy, ER � h2=2m�2

L � h�
3:2 kHz, where m is the atomic mass. The optical lattice is
ramped up in 160 ms, using a smooth waveform that
minimizes sudden changes at both ends of the ramp.
After switching off the optical and magnetic potentials
simultaneously and allowing for typically t � 10–22 ms
of free expansion, standard absorption imaging of the atom
cloud yields a two-dimensional map of the density distri-
bution (integrated along the probe line of sight).

Four such images are shown in Figs. 1(a)–1(d), for
various lattice depths. The density distribution of these
expanding clouds can be expressed as [15,16,19]
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In Eq. (1), the interference pattern is described by

S �k� �
X
i;j

eik��ri�rj�hâyi âji; (2)

where the operator âyi creates an atom at site i, and where
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FIG. 2. (a) Visibility of the interference pattern produced by an
ultracold cloud released from an optical lattice. The two sets of
data shown correspond to 3:6 � 105 atoms (gray circles) and
5:9 � 105 atoms (black circles). The latter curve has been offset
vertically for clarity. Arrows mark positions where kinks are
visible. (b) Numerical derivative of the above curves.
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~w is the Fourier transform of the Wannier function w�ri�.
The Fourier relation (2) shows that long-range phase co-
herence, i.e., a correlation function hâyi âji slowly varying
across the lattice, is necessary to observe a sharp diffrac-
tion pattern as in Fig. 1(a). However, above the MI tran-
sition [Figs. 1(b)–1(d)], the interference peaks evolve into
a much broader, crosslike structure that weakens with
increasing lattice depth. This slow modulation corresponds
to short-range coherence, i.e., a correlation function hâyi âji
whose range extends over a few sites only.

To extract quantitative information from time-of-flight
pictures as shown in Fig. 1, Eq. (1) suggests using the usual
definition of the visibility of interference fringes,

V �
nmax � nmin

nmax � nmin
�

Smax � Smin

Smax � Smin
: (3)

In this work, we measure the maximum density nmax at the
first lateral peaks of the interference pattern [20], (i.e., at
the center of the second Brillouin zone), whereas the
minimum density nmin is measured along a diagonal with
the same distance from the central peak [see inset in
Fig. 2(a)]. In this way, the Wannier envelope is the same
for each term and cancels out in the division, yielding the
contrast of S alone [hence the second equality in Eq. (3)].
Four pairs exist for a given absorption image, and their
values are averaged to yield the visibility. In previous
studies of the MI transition [10,14], the sharpness of the
interference pattern was characterized by the half-width of
the central peak. Such a measure is possibly sensitive to
systematic effects, such as optical saturation and mean-
field broadening. We expect our measure of contrast to be
much less sensitive to these effects, since it is calculated in
regions of the image where the density is lower.

We present here measurements of the visibility as a
function of lattice depth (typically in a range �6–30�ER)
at a given total atom number. Each value was obtained as
the visibility averaged over approximately 10 independent
images. Different atom numbers (hence different filling
factors) were investigated, ranging from 6 � 104 to 6 �
105. Two illustrative sets of data are shown in Fig. 2,
corresponding to approximately 5:9 � 105 atoms (black
circles) and 3:6 � 105 atoms (gray circles). For lattice
depths larger than 12:5ER, the system is in the insulating
phase [10]. Yet, the visibility remains finite well above this
point. For example, at a lattice depth of 15ER, the contrast
is still around 30%, reducing to a few percent level only for
a rather high lattice depth of 30ER. We now show that such
a slow loss in visibility is expected in the ground state of
the system.

As shown in [9], the physics of ultracold atoms in an
optical lattice can be described by the Bose-Hubbard
Hamiltonian, given by the sum of a tunneling term,
H t � �t�hi;jiâ

y
i âj, plus an interaction term, H int �

�i
U
2 n̂i�n̂i � 1�. Here n̂i � âyi âi is the on-site number op-

erator, t is the tunneling matrix element, the notation hi; ji
05040
restricts the sum to nearest neighbors only, and U is the on-
site interaction energy [11]. In the experiments, an addi-
tional, slowly varying potential Vext�r� is also present and
favors the formation of a ‘‘wedding cake’’ structure of
alternating MI and superfluid shells [9,15,21], which re-
flects the characteristic lobes delimiting the MI phases in
the phase diagram of the Bose-Hubbard model [11].

To better understand the origin of a finite visibility, we
consider a homogeneous system with filling factor n0. In
the limit of infinitely strong repulsion, U=t ! 1, the
ground state is what we call a ‘‘perfect’’ Mott insulator,
i.e., a uniform array of Fock states, j�iMI �

Q
ijn0ii. This

corresponds to a uniform S � n0 and zero visibility. To a
good approximation, the actual ground state for a finite
ratio U=t can be calculated by considering the tunneling
term as a perturbation to the interaction term. To first order
in t=U, this yields

j��1�i � j�iMI �
t
U

X
hi;ji

âyi âjj�iMI: (4)

The ground state thus acquires a small admixture of
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‘‘particle-hole’’ pairs (i.e., an additional particle at one
lattice site and a missing one in a neighboring site), which
restores short-range coherence and a corresponding weak
modulation in the momentum distribution, S�k� / n0 �
2n0�n0 � 1�t�k�=U, where t�k� � �2t���x;y;z cos�k�d�
is the tight-binding dispersion relation. The corresponding
2D visibility (integrated along one direction) is

V �
4

3
�n0 � 1�

zt
U
: (5)

In Eq. (5), z � 6 is the number of nearest neighbors in a 3D
cubic lattice.

To compare with the experiment, we show in Fig. 3 the
visibility against U=zt in a log-log plot. For lattice depths
V0 � 14ER (corresponding to U=zt � 8), the data match
the inverse law expected from Eq. (5). This has been
verified by fitting the data in this range to a general power
law A�U=zt�� (solid lines in Fig. 3). We obtain an average
exponent � � �0:98�7� in agreement with the prediction
[see Fig. 4(a)]. In Fig. 4(b), the fitted prefactor is plotted as
a function of atom number. Inspired by Eq. (5), we com-
pare it to 4�  n� 1�=3, where  n is the average filling factor
calculated at a lattice depth of 30ER using a mean-field
approximation [22,23]. We find that this extrapolation of
Eq. (5) to our trapped system indeed yields the correct
order of magnitude [see Fig. 4(b)]. We thus consider the
agreement between our experimental results and the simple
relations derived above as conclusive evidence for the
presence of particle-hole pairs, characteristic of the ground
state of the Bose-Hubbard Hamiltonian.

In addition to the smooth decay discussed above, the
visibility shows small kinks at specific lattice depths [in-
dicated by arrows in Fig. 2(a)]. They are systematically
observed in our data, and their positions are reproducible.
In the derivative plot [Fig. 2(b)], they appear as narrow
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FIG. 3. Visibility of the interference pattern versus U=zt, the
characteristic ratio of interaction to kinetic energy. The data are
identical to those shown in Fig. 2 (5:9 � 105, black circles, and
3:6 � 105 atoms, gray circles). The former curve has been offset
vertically for clarity. The lines are fits to the data in the range
�14–25�ER, assuming a power law behavior (see text).
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maxima on a smoother background. We obtained the kink
positions by taking the middle point between two adjacent
Gaussian peaks with negative amplitudes fitted to the data.
The most prominent kink occurs on average for a lattice
depth of 14:1�8�ER, with a statistical error indicated be-
tween parentheses. For the largest atom numbers (4:2 �
105 and 6 � 105), a similar but much weaker kink is also
visible around 16:6�9�ER (see upper curves in Fig. 2).
These values are close to 14:7ER and 15:9ER, the lattice
depths where MI regions with filling factor n0 � 2 or 3 are
expected to form for our parameters [23]. We thus propose
that the observed kinks are linked to a redistribution in the
density as the superfluid shells transform into MI regions
with several atoms per site. We were recently informed that
similar features were reproduced numerically for one-
dimensional trapped systems with a small number of par-
ticles [24].

We have considered the dependence of the visibility on
the time over which the optical lattice was ramped from
zero to its final value, for a specific lattice depth of V0 �
10ER. The visibility was considerably degraded for the
shortest ramp time of 20 ms, but reached a ramp-
independent value for ramp times larger than Tad �
100 ms (to be compared to the 160 ms time used in
visibility experiments). We note that Tad for this lattice
depth of V0 � 10ER is significantly longer than the micro-
scopic time scales of the system, such as the tunneling time
or the trapping periods. We note also that at the largest
lattice depth we use here (V0 � 30ER), the observed visi-
b
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FIG. 4. Exponent � (a) and prefactor A (b) extracted from a
power law fit A�U=zt�� to the visibility data in Fig. 3, plotted
versus total atom number. The solid line indicates the expected
exponent � � �1. In (b), we also indicate the prefactor expected
for uniform MI with filling factor n0 � 1 (dashed line) and n0 �
2 (dotted line), as well as an extrapolation for the average filling
calculated at a lattice depth of 30ER (solid line).
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bility is systematically above the power law fit in Fig. 3,
indicating a breakdown of adiabaticity. By comparing the
data to the fitted curve, we expect this to occur for V0 �
29ER (U=zt � 200), which agrees with the calculated
depth of 32ER for which the ramping time 160 ms becomes
smaller than the calculated tunneling time h=zt.

Although a complete study is beyond the scope of this
Letter, these observations suggest that different dynamical
processes are involved in the loading, depending on
whether the gas is in the superfluid or in the MI phase. In
the superfluid phase, the ramp time has to be slow enough
not to excite long-lived collective excitations. In the MI
phase, these excitations acquire an energy gap, which
makes single particle tunneling the dominant dynamical
process. In this case, the final tunneling time increases with
final lattice depth, and eventually becomes so long that the
system basically freezes out at some lattice depth, esti-
mated here to be 29ER.

In conclusion, we have studied the visibility of the
interference pattern produced by an ultracold Bose gas
released from a deep optical lattice. A nonvanishing visi-
bility in the MI phase is observed and explained by the
coherent admixture of particle-hole pairs to the insulating
ground state, which preserves local phase coherence. This
intrinsic limitation to the ‘‘quality’’ of a MI has important
implications for various quantum information processing
schemes, where the MI plays a central role [25–27]. In
addition, we observe small but reproducible kinks in the
visibility curve. We interpret them as the signature of
density redistribution in the shell structure of the cloud as
MI with several atoms per site are expected to form.
Finally, a recent paper [28] suggests that in a planar array
of one-dimensional Bose gases, the visibility might be
further reduced when correlations build up in each tube,
i.e., upon entering the Tonks-Girardeau regime. Experi-
mental study of these effects seems within reach with the
methods presented in this Letter.
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