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Dynamics of Critical Kauffman Networks under Asynchronous Stochastic Update
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We show that the mean number of attractors in a critical Boolean network under asynchronous
stochastic update grows like a power law and that the mean size of the attractors increases as a stretched
exponential with the system size. This is in strong contrast to the synchronous case, where the number of
attractors grows faster than any power law.
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Random Boolean networks were introduced in 1969 by
Kauffman [1,2] as a simple model for complex systems
consisting of units that interact via directed links. They are
used to model social and economic networks [3,4], neural
networks, and gene or protein webs [5].

A random Boolean network (RBN) is a directed graph
with N nodes each of which takes a Boolean value �i 2
f0; 1g. The number k of incoming edges is the same for
all nodes, and the starting points of the edges are chosen at
random. Usually these models are updated synchronously,
�i�t� 1� � ci��di;1�t�; . . . ; �di;k�t��, where the Boolean
coupling function ci of node i is chosen at random among
a given set of functions and di;j denotes the jth input
of node i. The configuration of the system ~� �
f�1; . . . ; �Ng thus performs a trajectory in configuration
space. Critical networks are of special interest [6]. Their
dynamics is at the boundary between a frozen phase where
initially similar configurations converge, and a chaotic
phase where initially similar configurations diverge
exponentially.

However, synchronous update is highly improbable in
real networks, and it is used under the tacit assumption that
going to asynchronous update will not modify the essential
properties of the system [7]. But there are good reasons to
doubt the validity of this assumption. For instance, for
cellular automata it is well known that some of the self-
organization is an artifact of the central clock [8]. For
RBNs there is also recent evidence that deviations from
synchronous update modify considerably the attractors of
the dynamics [9,10].

In this Letter, we investigate a version of the model
where at each computational step one node is chosen at
random and is updated. A model with this asynchronous
stochastic updating scheme is often called asynchronous
RBN (ARBN) [11–13], while the classical synchronous
RBN is referred to as CRBN. ARBNs are mostly studied
numerically with the focus on various measures of stability
[14–18]. ARBNs were observed to be capable to generate
an ordered behavior, but the detailed properties of attrac-
tors have not been studied yet.

We will show mostly analytically that the number of
attractors changes completely when going from CRBNs to
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ARBNs. For CRBNs, attractors are cycles in configuration
space, and their number was recently shown numerically
[1,19–22] and analytically [23,24] to grow faster than any
power law with the network size N. In contrast, we will
show in the following that for asynchronous stochastic
update the mean number of attractors grows as a power
law while their size increases like a stretched exponential
with N. As the dynamics is no longer deterministic, an
appropriate definition of an attractor must be given. An
attractor is a subset of the configuration space such that for
every pair of configurations on the attractor there exists a
sequence of updates that leads from one configuration to
the other. In [7], such an attractor is called ‘‘loose attrac-
tor.’’ Starting from a random initial configuration, the
system will eventually end up on an attractor.

Let us first consider a set of nodes arranged in a loop.
Such loops occur as relevant components of critical net-
works. Nontrivial dynamics occurs only if the two constant
Boolean functions are omitted, the remaining Boolean
functions being ‘‘copy’’ ( 	 ), and ‘‘invert’’ ( 
 ). A loop
with n inversions 
 can be mapped bijectively onto a loop
with n� 2 inversions by replacing two 
 with two 	 and
by inverting the state of all nodes between these two
couplings. It is therefore sufficient to consider loops with
zero inversions (‘‘even’’ loops) and loops with one inver-
sion (‘‘odd’’ loops). The position of the 
 coupling in the
odd loop is called the twisted edge. For synchronous up-
dates, each configuration is on a cycle in configuration
space and occurs again at most after N (2N) time steps
for even (odd) loops. The number of cycles increases
therefore exponentially with N. In contrast, most configu-
rations are transient in the asynchronous case, and only two
(one) attractors are left. The reason for this is that a domain
of neighboring nodes that have the same value increases or
decreases with probability 1=N per computational step.
The domain size therefore performs a random walk, and
for an even loop no domain wall is left after of the order of
N3 updates. The attractors are the two fixed points. For an
odd loop, the nodes of a domain change their state at the
twisted edge, and the total number of domain walls is
therefore odd. The attractor contains only one domain
wall that moves around the loop, and the attractor com-
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prises 2N configurations. The dynamics on such a loop is
closely related to the Glauber dynamics [25] of a one-
dimensional Ising chain with cyclic boundary condition
at temperature T � 0, where the domains also shrink and
grow with a fixed rate and where the equal-time correlation
function obeys a scaling form C�r; t� � f�r2t�1� [26]. The
dynamics of an odd loop can be mapped onto the dynamics
of an Ising chain with one negative coupling. It is a
frustrated system in which not all bonds can be satisfied
simultaneously. To conclude, by going from synchronous
to asynchronous update, the number of attractors of a loop
is reduced from an exponentially large number to 1 or 2.
This was also pointed out in [27], where a different asyn-
chronous updating rule is used.

Let us next consider critical networks with connectivity
k � 1, where the Boolean coupling functions are again
copy and invert. In [24,28], exact results for the topology
of k � 1 networks are derived. The network consists of the
order of ln�N� unconnected components, each of which
contains a loop of relevant nodes, and trees rooted in these
loops. (In general, relevant nodes are defined as those
nodes whose state is not constant and that control at least
one relevant element [21]. They determine the attractors of
the system.) The number of loops of size l is Poisson
distributed with a mean 1=l. The cutoff loop size is of
the order of

����
N

p
. In [24] it is shown that the number of

attractors of a critical k � 1 network increases faster than
any power law. Under asynchronous update, this is funda-
mentally different, since each loop has at most two attrac-
tors, and an average number of 3=2 attractors. Denoting
with nl the number of loops of size l, and with lc 

����
N

p
the

cutoff in loop size, and averaging over the entire ensemble
of networks of size N, we obtain the following expression
for the mean number of attractors:
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This is a power law with the exponent 1=4. In a model with
only 	 couplings, the exponent would be 1=2, which is the
power law originally expected by Kauffman for critical
k � 2 CRBNs. The mean attractor size is obtained by also
considering the dynamics on trees. The nodes on trees
rooted in even loops are frozen because the loop is on a
fixed point. The nodes on trees rooted in odd loops can
assume any combination of states, since one can find for
each possible state of a tree a sequence of updates that
generates it. The number of nodes in trees is of the order of
N. On average, half of the trees are rooted in odd loops.
Consequently the mean attractor size increases exponen-
tially with N.

Finally, we investigate the most frequently studied criti-
cal networks with connectivity k � 2, where each of the 16
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possible Boolean coupling functions is chosen with equal
probability. All nodes apart from the order of N2=3 nodes
are frozen [20]. The number of relevant nodes scales as
N1=3 [20], and only a fraction N�1=3 of these relevant nodes
have two relevant inputs [29]. The other relevant nodes
have one relevant input (as the second input comes from a
frozen node). The remaining nonfrozen nodes (of the order
of N2=3) are on trees rooted in relevant nodes. Just as for the
k � 1 networks, there are of the order of ln�N� independent
relevant components [21]. In contrast to the k � 1 net-
works, these components are not always simple loops, but
may contain several nodes with two relevant inputs. In
order to obtain results for the number of attractors of the
networks, we have to investigate the attractors of such
relevant components.

Let us first consider relevant components that contain
one node with two relevant inputs. These are two loops
with one interconnection (�–� component), and a loop
with an extra link (� component). The dynamics under
synchronous update for such components is studied in [30],
and it is found that the number of attractors in both systems
increases exponentially with the number of nodes. With
asynchronous update, the number of attractors becomes
very small.

We discuss first two loops with one interconnection. The
first loop is independent of the second loop, and its attrac-
tor is either a fixed point (if the loop is even), or it has one
domain wall moving around the loop. If the first loop is on
a fixed point, it provides a constant input to the second
loop, which therefore behaves like an even loop, or an odd
loop, or a frozen loop. The system can have at most three
attractors. If the first loop is odd, if provides a changing
input to the second loop, which can therefore have an
attractor that contains an arbitrary and fluctuating number
of domain walls. Consequently, a loop that has one external
input can show one out of four different types of behavior
on an attractor: (1) The loop can be at a fixed point 0.
(2) The loop can be at a fixed point 1. (3) There is exactly
one domain wall which moves around the loop. (4) The
number of domain walls in the loop fluctuates. (Without
loss of generality, we have assumed that all coupling
functions for nodes with one input are copy.)

Now we turn to a loop with an extra link. We can again
assume that all coupling functions for nodes with one input
are copy. If this component has one fixed point (two fixed
points), it is (they are) the only attractor(s). This is because
one can reach a fixed point from an arbitrary initial state by
updating one node after another by going around the loop
in the direction of the links. After at most two rounds the
fixed point is reached. Only if the coupling function for the
node with two inputs has no fixed point, a more compli-
cated attractor occurs. Without loss of generality, we
choose this function to have the output 1 if and only if
both inputs are 0. By considering the possible update
sequences, one finds that the component can accumulate
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a large and fluctuating number of domain walls, as illus-
trated in Fig. 1.

Equipped with these results, we now consider compo-
nents with several nodes with 2 inputs. We define a section
to be a sequence of nodes starting at a node with two inputs
and ending right before a node with 2 inputs. Such a
sequence can branch and have several end points.
Clearly, the number of sections is the number of nodes
with 2 inputs; a simple loop is counted as one section. A
section is controlled by its first node, which is the one with
2 inputs. Just as for the loop with one external input, a
section can show on an attractor one out of the four differ-
ent types of behavior listed above. This is because all states
that have more than a single domain wall in a given section
must be part of the same attractor. We show this by the
following argument: Assume that on an attractor there
occur two domain walls in a section. The two domain walls
can be destroyed by updating all nodes between the two
walls, such that the domain enclosed by the walls vanishes.
A configuration with no wall on the section (and with the
state of all other sections unmodified) is therefore also part
of the attractor, and there exists consequently a way back to
the configuration with two domain walls on this section. By
repeating the same sequence of updates, every even num-
ber of domain walls can be created in this section, and odd
numbers can be created by moving one domain wall out of
the section. If s is the number of sections, an upper bound
for the number of attractors of the component is therefore
given by 4s.

We checked this analytical result by computer simula-
tions. In order to make sure that we capture all attractors,
we did a complete search of state space, which can only be
done for small networks. Starting from an initial state, we
did N3 updates before assuming that the system is on an
attractor, and we made sure that the results are not changed
a b c
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FIG. 1 (color online). A possible sequence of configurations of
a loop with a cross-link showing how multiple domain walls are
generated. The coupling function of the node � with two inputs
is such that only two dark inputs lead to light output, all other
combination give black output. After (e) the procedure described
by (a) to (d) is repeated to obtain (f) and similarly for (g), (h) and
(i).

04870
when the length of the initial time period is varied. All
states that can be reached from this last state are on the
same attractor as this state. All other states that have been
visited are marked as transient states. Then we start with an
unvisited state as new initial condition in order to identify
further transient states and attractors. We constructed rele-
vant components by starting with one loop of a certain size,
and by iteratively inserting additional connections between
two randomly chosen nodes. The new connection contains
a randomly chosen number of 1 to 4 nodes (such that a
section can contain two domain walls in its interior). In
these networks, the number of sections, s, is identical to the
number of nodes with 2 inputs, �. After each insertion, we
evaluated the number of attractors for different choices of
coupling functions. This procedure was repeated more than
750 000 times. The largest number of attractors found in a
system is shown in Table I as function of s � max�1; ��.

This leads us to the conclusion that a network consisting
of the order of ln�N� relevant components, with component
number i having �i nodes with 2 inputs, cannot have more
than

4max�1;�1� � 4max�1;�2� � . . .� 4max�1;�lnN� � 4ln�N���

attractors. This is a power law in N if the probability
distribution for the value of � becomes independent of N
for large N. Indeed, as we have mentioned above, each of
the N1=3 relevant nodes has two (randomly chosen) rele-
vant inputs with probability aN�1=3 (with some constant
a). Since this probability is independent for different
nodes, the value of � is distributed for large N according
to a Poisson distribution with a mean a. We therefore
obtain the following estimate for the number of attractors:

�k�2 � const� Nln 4: (2)

We thus have shown that in critical k � 2 networks with
asynchronous stochastic update, the number of attractors
grows as a power law in N, which is in strong contrast to
the synchronous case, where the number of attractors in-
creases like a stretched exponential function.
TABLE I. Maximum number of attractors �max as function of
the number of nodes with 2 inputs, �, for networks with up to
17 nodes. Networks with higher � are probed less often because
if only short links are added there is no node left which has not
already two inputs.

� �max 4s Realizations

0 2 1 227 683
1 2 4 167 370
2 9 16 138 541
3 8 64 110 263
4 23 256 73 268
5 25 1024 40 770
6 23 4096 15 727
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We conclude with a discussion of the size of attractors in
these networks. There are of the order of N2=3 nodes on the
trees rooted in the relevant components. These nodes in
trees can adopt any configuration if the node they are
rooted in can switch its state on an attractor. Since a non-
vanishing fraction of all relevant nodes switch their states
on an attractor, the size of the attractor is of the order of

2N
2=3

� exp�N2=3 ln2�: (3)

The size of the attractors grows like a stretched exponential
function and therefore faster than any power law.

Many of our results also hold for other kinds of stochas-
tic asynchronous update, for instance if a certain (small)
fraction of nodes is updated at each step, or if the time
interval between two updates of a node is peaked at a value
� and Gaussian distributed around it. (The latter case
describes our system for large N, when the network of
relevant nodes is coarse grained such that of the order of
N1=3 neighboring nodes are replaced by a single node that
receives a delayed input from the previous node.) In these
modified stochastic models, domain walls on an isolated
loop can annihilate, but cannot be created again, leading to
the same attractors as with the completely stochastic up-
date. However, the state of the trees rooted in the loops will
be dominated by a few domain walls when the distribution
of update times becomes narrow, with states with more
domain walls occurring rarely. Similarly, relevant loops
that receive input from outside, and relevant components
with nodes with two inputs will have attractors dominated
by few domain walls, and the actual size of attractors
becomes in the thermodynamic limit N ! 1 smaller
than the size obtained by considering any possible se-
quence of updates.

The biological implications of such findings have been
pointed out in [27]. Since biological networks do not have
a completely synchronous update, the number of attractors
should be derived from models with asynchronous updates.
In [9] it is found numerically that the number of stable
attractors increases sublinearly. Attractors are called stable
if they do not change when a perturbation is added to a
synchronous updating rule. The present paper extends this
finding by showing that the number of attractors in critical
asynchronous Kauffman models increases as a power law,
and we thus regain the original claim by Kauffman—albeit
for models with a different update rule than the original
one.
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