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Exact Results for Strongly Correlated Fermions in 2� 1 Dimensions
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We derive exact results for a model of strongly interacting spinless fermions hopping on a two-
dimensional lattice. By exploiting supersymmetry, we find the number and type of ground states exactly.
Exploring various lattices and limits, we show how the ground states can be frustrated, quantum critical, or
combine frustration with a Wigner crystal. We show that on generic lattices the model is in an exotic
‘‘superfrustrated’’ state characterized by an extensive ground-state entropy.
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Over the past few decades thousands of papers have
been written exploring properties of itinerant-electron
models in two spatial dimensions. Exact results, however,
for such systems at strong coupling are few and far be-
tween. In this Letter we find the exact number and type of
ground states in a model of spinless fermions with strongly
repulsive nearest- and next-nearest-neighbor interactions.
The strengths of these interactions are tuned to give an
exact supersymmetry. The supersymmetry not only makes
our exact computations possible, but also balances com-
peting terms in the Hamiltonian. On most lattices, this
results in an exotic ‘‘superfrustrated’’ state.

Our model is most transparently defined in terms of the
supersymmetry generator Q and its Hermitian conjugate
Qy, which are fermionic and obey Q2 � �Qy�2 � 0. These
commute with the Hamiltonian defined by H � fQ;Qyg.
This relation is at the heart of supersymmetric quantum
mechanics; a number of important results follow [1]. All
energy eigenvalues E satisfy E � 0, because hsjHjsi �
hsjQQyjsi � hsjQyQjsi cannot be negative. Any state
with E � 0 is therefore a ground state; it is annihilated
by bothQ andQy. Therefore, all we need to do to construct
a many-body model with supersymmetry is to find a fer-
mionic operator Q squaring to zero.

Our degrees of freedom are spinless fermions living on
any lattice or graph of N sites in any dimension. A fermion
at site i is created by the operator cyi with fci; c

y
j g � 
ij.

The sum �ic
y
i squares to zero, but using this for Q results

in a trivial Hamiltonian. The strongly interacting model we
discuss was introduced in Ref. [2]. The fermions have a
hard core, meaning that they are not only forbidden to be
on the same site as required by Fermi statistics, but are also
forbidden to be on adjacent sites. Their creation operator is
dyi � ciP hii, where

P hii �
Y

j next to i

�1� cyj cj� (1)

is zero if any site next to i is occupied. A fermionic
operator Q squaring to zero is then Q � �id

y
i . This gives

a nontrivial Hamiltonian
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H � fQ;Qyg �
X
hiji

dyi dj �
X
i

P hii: (2)

The latter term has a more conventional form on a lattice
where every site has z nearest neighbors:

X
i

P hii � N � zF�
X
i

Vhii; (3)

where Vhii � 1 is the number of particles adjacent to i,
unless there are none, in which case Vhii � 0. The operator
F � �id

y
i di counts the number of fermions. So, in addition

to the hard core, the Hamiltonian includes a hopping term,
a constant (which we keep to ensure ground states have
E � 0), a chemical potential z, and repulsive interactions
between fermions two sites apart.

We use two mathematical tools to study the E � 0
ground states of (2). The first is the Witten index W [1].
It is similar to the partition function, but includes a minus
sign for each fermion:

W � tr
��1�Fe��H�: (4)

W is a lower bound on the number of ground states: it is the
difference of the number of bosonic ground states and the
number of fermionic ground states. This is because all
energy eigenstates with E> 0 form boson-fermion dou-
blets of the same energy E but opposite ��1�F. The states
in a doublet contribute toW with opposite signs and cancel,
leaving only the sum of ��1�F over the ground states.

This argument shows that W is independent of �, so we
can evaluate it in the �! 0 limit, where every state
contributes with weight ��1�F. We compute this by divid-
ing the lattice into two sublattices S1 and S2; we fix a
configuration on S1 and sum ��1�F for the configurations
on S2. Then we sum the results over the configurations on
S1. For a periodic chain with N � 3j sites, we take S2 to be
every third site and the remaining sites S1. Then the sum
over configurations on any site on S2 vanishes unless at
least one of the adjacent sites on S1 is occupied. There are
only two such configurations:
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j�i � � � ��� � �� � �� � �� � �� � �� � . . . ;

j�i � � � � � �� � �� � �� � �� � �� � �� . . . ;

(5)

where the square represents an empty site on S2. Both j�i
and j�i have f � N=3, so W � 2��1�f, requiring that
there are at least two ground states.

The second tool we use is the computation of the coho-
mology HQ of the operator Q. This tool is even more
powerful, allowing us to obtain not just a lower bound,
but rather the precise number of ground states, and the
fermion number of each. The cohomology is the vector
space of states which are annihilated by Q but which are
not Q of something else (in mathematical parlance, these
states are closed but not exact) [3]. Since Q2 � 0, any state
that is Q of something is annihilated by Q. Two states js1i
and js2i are said to be in the same cohomology class if
js1i � js2i �Qjs3i for some state js3i.

The nontrivial cohomology classes are in one-to-one
correspondence with the E � 0 ground states [2]. To see
this, consider an energy eigenstate jEiwith eigenvalue E>
0. If QjEi � 0, then it is not in any cohomology class. If
QjEi � 0 but HjEi � 0, then jEi � Q�QyjEi=E�. This is
in the trivial cohomology class, so only the E � 0 ground
states have nontrivial cohomology. Because they are anni-
hilated by both Q and Qy, linearly independent E � 0
ground states must be in different cohomology classes.
Precisely, the dimension of the vector space of ground
states (the ‘‘number’’ of ground states) is the same as
that of the cohomology. Since F commutes with the
Hamiltonian, the cohomology class and the corresponding
ground state have the same fermion number.

To illustrate these techniques, let us first generalize some
of the one-dimensional results of Ref. [2] to a staggered
(but still supersymmetric) chain. Let Q�a� � Q1 � aQ2

where a is a parameter and

Q1 �
XN=3
j�1


dy3j�2 � dy3j�; Q2 �
XN=3
j�1

dy3j�1: (6)

Because 
Q�a��2 � 0, the Hamiltonian fQ�a�; Qy�a�g is
supersymmetric. It deforms (2) by multiplying the hopping
term by a for hopping on or off S2, and multiplying P hii by
a2 when i is on S2. For a ! 1, the E � 0 ground states
therefore are the states where P h3ji � 0 for all j. There are
only two: j�i and j�i from (5). For large but finite a, there
remain two ground states; for example, j�i � 1=aj�2i �
O�1=a2�, where j�2i is the sum of configurations differing
from j�i by shifting one particle one site to the right. When
a � 1, we know from the Bethe ansatz solution that there
are two ground states as well and that the model is gapless
[4]. For a � 1, there are also two ground states, one
localized on S2 and the other with one particle for every
two sites of S1. The a � 1 ground states spontaneously
break different parity symmetries than j�i and j�i do, and
04640
a � 1 is a quantum critical point separating the two
phases.

We find the exact number of ground states by computing
the cohomology HQ by using a spectral sequence. A useful
theorem is the ‘‘tic-tac-toe’’ lemma of Ref. [3]. This says
that under certain conditions, the cohomology HQ for Q �

Q1 �Q2 is the same as the cohomology of Q1 acting on
the cohomology of Q2. In an equation, HQ � HQ1

�HQ2
� �

H12. As with our computation of W, H12 is found by first
fixing the configuration on all sites on the sublattice S1, and
computing the cohomology HQ2

. Then one computes the
cohomology of Q1, acting not on the full space of states,
but only on the classes in HQ2

. A sufficient condition for
the lemma to hold is that all nontrivial elements of H12

have the same f2 (the fermion number on S2).
We apply this theorem to the one-dimensional chain by

using the decomposition of Q � Q1 � aQ2 given by (6).
Consider a single site on S2. If both of the adjacent S1 sites
are empty, HQ2

is trivial: Q2 acting on the empty site does
not vanish, while the filled site is Q2 acting on the empty
site. Thus HQ2

is nontrivial only when every site on S2 is
forced to be empty by being adjacent to an occupied site.
The elements of HQ2

are just the two states j�i and j�i
pictured above in (5). Both states j�i and j�i belong to
H12: they are closed because Q1j�i � Q1j�i � 0 and are
not exact because there are no elements of HQ2

with f1 �
f� 1. By the tic-tac-toe lemma, there must be precisely
two different cohomology classes in HQ, and therefore
exactly two ground states with f � N=3. Applying the
same arguments to the periodic chain with 3f� 1 sites
and to the open chain yields in all cases exactly one E � 0
ground state, except in open chains with 3f� 1 sites,
where there are none [4].

We emphasize that for finite a, j�i and j�i are not the
ground states themselves. A representative of a cohomol-
ogy class is not necessarily unique, because adding Q of
something to it does not change the class. A ground state is
the one element in each class which is also annihilated by
Qy. One can use this observation in principle (and in
practice for small numbers of sites) to construct the exact
ground states from j�i and j�i as a power series in 1=a [5].
The presence of states j�i and j�i in the ground states hints
that the energy is lowest when particles are three sites
apart. The chemical potential favors the creation of more
particles, but putting them two sites apart causes an in-
crease in potential energy and hopping energy. The two
effects balance at an average separation of roughly three
sites; we call this heuristic the ‘‘3-rule.’’

Having introduced the mathematical tools necessary, we
now turn to the study of our spinless-fermion model on
two-dimensional lattices. We find that generically, there is
an extensive ground-state entropy: the number of ground
states increases exponentially with the size of the system.
This indicates that the system is frustrated; we explain how
in the following.
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The systematics of the one-dimensional case quickly
extend to lattices of type 
3, which are obtained from
any lattice (or even graph) 
 by putting two additional
sites on every link. Letting S1 be the original sites of 
 and
S2 the added sites, the only states in HQ2

and H12 are the
two where S1 is completely full and completely empty. The
first gives an E � 0 ground state with f � N
 (the number
of sites of 
), while the latter gives an E � 0 state with
f � L
 (the number of links in 
), with a possible ex-
ception when L
 � N
 � 1. When 
 is the square lattice,
the two ground states on 
3 have filling f � N=5 and f �
2N=5. Lattices of type 
3 are the only two-dimensional
ones we know of where the number of ground states does
not grow with the size of the lattice.

Another exceptional case is the octagon-square lattice in
the first part of Fig. 1. We take L rows and M columns of
squares (hence N � 4LM sites). Let S1 consist of the
leftmost site on every square. Then HQ2

is trivial unless
the M sites on S1 in a given row are either all occupied or
all empty. There are 2L � 1 such configurations that have
at least one row in S1 occupied. Because of the hard core,
all the sites of S2 adjacent to an occupied site on S1 cannot
be filled, and the remaining sites form independent open
chains of length a multiple of 3. Such an open chain has just
one element ofHQ2

, so each of these 2L � 1 configurations
correspond to one element of HQ2

and H12. Now consider
the configuration where all sites on S1 are empty, so that
the sites on S2 form M periodic chains, each of length 3L.
We showed above that HQ2

for each of these chains has two
independent elements. Thus HQ2

and H12 are of dimension
2L�2M�1. Applying the tic-tac-toe lemma to this case is
more involved, but the conclusion is that there are 2L �
2M � 1 ground states, each with N=4 fermions.

We believe that on the octagon-square lattice, the model
exhibits a combination of Wigner-crystal order with frus-
tration. There are 2L � 2M configurations of N=4 particles
that satisfy our heuristic 3-rule. 2L of them are of the form
displayed in Fig. 1: one can shift all the particles in a given
row without violating the rule. This illustrates how frus-
tration arises: in each row one can shift all the particles
without violating the 3-rule. Likewise, 2M of them have
particles on the top or bottom of each square. For myste-
rious reasons, the state with �kx; ky� � 0 is not a ground
state, but we believe the remaining 2L � 2M � 1 ordered
states dominate the actual ground states. In further support
FIG. 1 (color online). Configurations obeying the 3-rule on the
octagon-square and nonagon-triangle lattices.
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of this claim, we analyze the discrete symmetries commut-
ing with Q. If a given element of the cohomology sponta-
neously breaks such a symmetry, the corresponding ground
state will break it too. The ground states have spontane-
ously-broken parity symmetries like the Wigner-crystal
states in Fig. 1. Again, like the crystal, all but one of the
2L � 1 ground states first considered spontaneously break
translation symmetry in the vertical direction but not the
horizontal; 2M�2 of the remaining ground states sponta-
neously break translation symmetry in the horizontal di-
rection. Moreover, the number of ground states here can be
changed by requiring that just one site anywhere on the
lattice be occupied. Consider the octagon-square lattice
with one site on S1 and its three neighbors on S2 removed;
this is equivalent to demanding that there be a particle on
this S1 site. On this lattice there are just 2L�1 ground states.
Only in an ordered system should this type of change
occur.

The 
3 and octagon-square lattices are exceptional: on
all other lattices we have studied the ground-state entropy
is extensive. In many cases (including the triangular, hex-
agonal, and Kagomé lattices), this can be seen by comput-
ing the Witten index W as a function of the size of the
lattice. Employing a row-to-row transfer matrix TM, the
index for M� L unit cells is expressed as WL;M �
tr
�TM�L�. We found by exact diagonalization that the
largest eigenvalues  max

M of the TM here behave as  max
M /

 M, with j j> 1. Clearly, the absolute value j j sets a
lower bound on the ground-state entropy per lattice site.
For n sites per unit cell, SGS=N � lnjWL;Mj=�nML� �
lnj j=n. For the triangular lattice, SGS=N � 0:13 [6,7].

For the nonagon-triangle lattice shown in the right side
of Fig. 1, the extensive ground-state entropy can be exactly
computed. This lattice is formed by replacing every other
site on a hexagonal lattice with a triangle. To find the
ground states, take S1 to be the sites on the triangles and
S2 to be the remaining sites. As with the chain, HQ2

vanishes unless every site in S2 is adjacent to an occupied
site on some triangle. The nontrivial elements of HQ2

therefore must have precisely one particle per triangle,
each adjacent to a different site on S2. This is because a
triangle can have at most one particle on it, and (with
appropriate boundary conditions) there are the same num-
ber of triangles as there are sites on S2. A typical element of
HQ2

is shown in Fig. 1. One can think of these as ‘‘dimer’’
configurations on the original honeycomb lattice, where
the dimer stretches from the site replaced by the triangle to
the adjacent nontriangle site. Each close-packed hard-core
dimer configuration is in H12, and, by the tic-tac-toe
lemma, it corresponds to a ground state. The number of
such ground states eSGS is therefore equal to the number of
such dimer coverings of the honeycomb lattice, which for
large N is [8]

SGS
N

�
1

"

Z "=3

0
d# ln
2 cos�#�� � 0:161 53 . . . : (7)
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FIG. 2 (color online). ‘‘Ordered’’ states for the triangle-square
ladder and the square lattice; the red squares are sublattice 2.
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The frustration here clearly arises because there are many
ways of satisfying the 3-rule.

For the staggered model, Q � Q1 � aQ2, on the
nonagon-triangle lattice, the dimer states are the exact
ground states when a ! 1. In the singular limit a � 0
there are more ground states: j�2i with all particles on S2,
2N=4 ground states j��s�

1 i with one particle on each of the
triangles, and additional ground states at higher fermion
numbers as well. For 0< a � 1, j�2i and eSGS � 1 of the
j��s�

1 i remain ground states, while the others develop en-
ergies of order a2. The ground-state degeneracy can be
lifted by including terms that break the supersymmetry.
Consider changing the intratriangle hopping amplitude to
1� % with % > 0. At a � 0, the j��s�

1 i have energy E �
N%=4, so here the Wigner crystal j�2i is the unique E � 0
ground state. For a large and % small, the leading piece in
the effective Hamiltonian is a ‘‘flip’’ of 3 dimers around a
plaquette, as in the quantum dimer model [9]. For generic
potentials this model orders [10], leading to the possibility
of a quantum critical point intermediate between this or-
dered phase and the a � 0 one. A quantum critical point,
indeed, occurs for the chain at a � 1 [2,4], and so seems
possible on general lattices for a� 1.

The situation on lattices with a higher coordination
number is more complicated. There are ground states
with more particles than the 3-rule allows: the increased
chemical potential and possibilities for hopping compen-
sate for an increase in potential energy. For the triangle-
square ladder in Fig. 2 with N � 3n� 1 sites and open
boundary conditions, we obtained a recursion relation for
the ground-state generating function Pn�z� � trGS�zF�:

Pn�3�z� � 2z2Pn�z� � z3Pn�1�z�; (8)

with P0 � 0, P1 � z, P2 � 2z2, P3 � z3. This shows the
existence of 2n=3 ground states at fermion number 2N=9,
and also indicates additional ground states at higher fil-
lings, up to N=4. An ‘‘ordered’’ state with f � 2N=9
violating the 3-rule is given in Fig. 2, but the frustration
is evident in that there are many such states. Using the
recursion relation, we find that the ground-state entropy is
set by the largest solution  max of  4 � 2 � 1 � 0, giving
SGS=N � �ln max�=3 � 0:1110 . . . .
04640
On a square lattice of 3L� 3M sites with periodic
boundary conditions, the situation is similar. When S2
consists of the red squares in Fig. 2, there are two elements
of H12 that have S2 empty; one of them is displayed in
Fig. 2. They have 2N=9 � 2LM particles, and also violate
the 3-rule. Many more ground states with different fermion
numbers can be found by introducing various types of
defects in this pattern, but we have not found a way of
counting them all [7].

Our exact results indicate that there is a new kind of
exotic phase for itinerant fermions on a two-dimensional
lattice with strong interactions. This superfrustrated state
exhibits an extensive ground-state entropy, and occurs
because supersymmetry ensures a perfect balance between
competing terms in the Hamiltonian. Patterns with charge
order can be distinguished in various limits and on special
lattices, but the effect of (approximate) supersymmetry in
general is that defects between different domains come at
zero (very low) energy cost. For example, the charge order
(stripes) found for hard-core fermions on the square lattice
[11] becomes superfrustrated as the interactions and
chemical potential are tuned to the supersymmetric point.
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