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Influence of Indenter Tip Geometry on Elastic Deformation during Nanoindentation
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Nanoindentation with a Berkovich indenter is commonly used to investigate the mechanical behavior
of small volumes of materials. To date, most investigators have made the simplifying assumption that the
tip is spherical. In reality, indenter tips are much more complex. Here, we develop a new method to
describe the tip shape using the experimentally determined area function of the indenter at small depths
(0-100 nm). Our analysis accurately predicts the elastic load-displacement curve and allows the
theoretical strength of a material to be determined from pop-in data. Application of our new method to
single crystal Cr;Si shows that the predicted theoretical strengths are within 12% of the ideal strength

G /2, where G is the shear modulus.
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Nanoindentation is a useful technique for measuring the
mechanical properties of small volumes of materials [1].
Often it is performed with a Berkovich indenter which has
the shape of a three-sided pyramid with triangular faces.
Real Berkovich indenters are not perfectly sharp but are
blunt to varying degrees. The most common approximation
that has been used to describe a blunt Berkovich indenter is
that it is spherical near the tip. However, the radius, R, of
such a spherical tip is not well known. Some investigators
have used tip radii quoted by manufacturers [2—4], but
these are subject to great uncertainty since they are usu-
ally no more than order-of-magnitude estimates, in addi-
tion to which the actual radius may change during use due
to wear. To circumvent this problem, others have attempted
to directly measure the tip radius by atomic force or scan-
ning electron microscopy [5,6]. Another popular approach
is to fit the elastic load-displacement data by the Hertzian
relation:

4
pP= §E,Rl/2h3/2, (1)

where P is the indenter load, 4 is its displacement, and E,
is a reduced elastic modulus [7]. Once the radius is known,
the stresses in the material can be evaluated from Hertzian
contact mechanics as a function of the applied load.
Although a reasonable first approach, the tips of most
Berkovich indenters are not truly spherical over the range
of depths at which most measurements are made. In this
Letter, rather than assuming a spherical tip, we describe the
geometry using the area function measured in the indenter
tip shape calibration procedure and examine the influence
this has on one aspect of nanoscale mechanical behavior,
namely, the theoretical strengths calculated from pop-in
data. Pop-in events are characterized by sudden bursts of
displacements at specific indentation loads which pro-
duce discontinuous steps in otherwise smooth load-
displacement curves. They have been investigated during
nanoindentation with pyramidal and spherical indenters in
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crystalline [1-6,8—12] and amorphous materials [13,14].
In crystalline materials devoid of surface oxides and other
contaminating surface layers, the first pop-in event signi-
fies the transition from purely elastic to elastic/plastic
deformation and is thought to be associated with the nu-
cleation of dislocations [2—6,8—12]. Since the first exten-
sive study of pop-in events in sapphire by Page et al. [9], it
has been observed in numerous metals and ceramics, par-
ticularly those in which the initial dislocation density is
low and/or the mobility of existing dislocations is severely
restricted. The shear strength at pop-in events is frequently
close to the theoretical strength G /2, where G is the shear
modulus. The depths at which pop-in events have been
observed range from ~6-120 nm [1-6,8—12].

We report here results of nanoindentation experiments
carried out with a diamond Berkovich indenter on a Cr;Si
single crystal grown as described elsewhere [15]. Finite
element analyses, using the Virtual Indenter™ finite ele-
ment simulation package (MTS Corporation, Knoxville,
TN), were used to determine the maximum resolved shear
stresses at the pop-in load from the measured indenter
shape and compared to analyses assuming a spherical tip
to establish important differences.

A large and reproducible pop-in event was observed in
the Cr3Si single crystals, an example of which is shown in
Fig. 1. The magnitude of the pop-in load varied with
crystallographic orientation, presumably due to differences
in the shear stress resolved onto the slip system. Cr;Si has
the A15 crystal structure and slips on (100)[001]. The
average pop-in loads based on 10 measurements for each
of the three low-index orientations were as follows: 5.4 =
0.4 mN for [100]; 3.9 = 0.3 mN for [110]; 4.7 = 0.4 mN
for [111]. The pop-in loads and displacements are summa-
rized in Table L.

The area function of the indenter was determined over
the depth range 0—100 nm by performing experiments in
fused quartz, which is the standard calibration material.
This particular range was chosen to give accurate measure-
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FIG. 1 (color online). Load-displacement data for a (110)
single crystal of Cr;3Si illustrating the pop-in behavior.

ments at the depths at which a pop-in event was observed
(61-83 nm; see Table I). The area function was measured
using a minor variation on the Oliver-Pharr method. The
contact depths, A, were evaluated using exactly the pro-
cedures developed by Oliver and Pharr, but the contact
areas, A, were determined from the dynamically measured
contact stiffnesses, S, by means of the contact stiffness/

area relation [16]:
2
A= f( S ) . )
4 \BE,

The constants used to evaluate this expression were E, =
69.6 GPa based on the elastic constants of fused quartz and
diamond indenter, and 8 = 1.034 (the normally assumed
value) [1]. The area function so determined is shown as the
experimental data points in Fig. 2. Using standard curve-
fitting procedures, the A vs /. data in Fig. 2 were found to
be well described by the simple two-parameter relation:

A= ah? + ayh,, 3)

where oy = 25.97 and a, = 1457 (h,. is in units of nm; A
in units of nm?). The form of this relation, which we have
observed to work well for many Berkovich indenters, has a

simple physical interpretation. The first term represents a
conical or pyramidal indenter (a; = 24.56 for a perfect
Berkovich indenter). The second term describes a spherical
indenter in the limit 2. << R. This follows from the exact
relation for a sphere,

A = 2mwRh, — wh?, “4)

which reduces to A =2wRh, when h, < R. Conse-
quently, @, = 27R, meaning that the sphere for which
ay = 1457 has a radius R = 232 nm. Because of the dif-
ferent dependencies on /., the conical first term in Eq. (3)
dominates at large penetration depths, while the spherical
second term is more important at small depths. Equa-
tion (3) thus provides a natural way to interpolate between
the two important limiting cases of spherical contact at
small depths and conical or pyramidal contact at large
depths. The cone for which a; = 25.97 has a semivertical
angle of 70.8° rather than 70.3°, which is the conical
equivalent of a perfect Berkovich indenter.

The relative contributions of the individual terms to the
contact area are plotted along with the experimental data in
Fig. 2. Note that, in the depth range of interest for the
analysis of the pop-in data, neither term is dominant, and
the contributions of both must be considered to obtain the
correct contact areas. For this reason, analyses based
strictly on the spherical tip assumption can lead to errors.

Assuming that the indenter is axially symmetric, the
relation between the contact radius, a, and the contact
depth, A, derived from Eq. (3) is

=82+ — R+ Coh,, 3)
e ar

where C; = a,/ and C, = a, /7. In r-z cylindrical co-
ordinates, the shape of the axially symmetric indenter is
then given by

—C, +./C2 +4C,(r/a)?
2= flrfa) = —— V2 ey )

2C,

We will use this function to describe the indenter tip shape
in all subsequent analyses.

Since the indenter shape described by Eq. (6) is smooth
(i.e., infinitely differentiable) and f(0) = 0, an analytical
method developed by Sneddon [17] can be used to deter-

TABLE I. Measured and computed parameters for Cr3Si single crystals.

Indentation direction [100] [110] [111]
Load at pop-in event, P (mN) 54=*+04 39+0.3 47+ 0.4
Displacement at pop-in event, 4 (nm) 83 61 74
Contact radius at pop-in event, a (nm) 197 158 184
Effective sphere radius, Ry (nm)* 412 379 358
Maximum 75 (finite element analysis) (GPa) 18.1 22.3 21.7
Maximum 7, (Hertz R = 232 nm) (GPa) 23.9 314 26.4
Maximum 7, (Hertz R = R.) (GPa) 164 22.7 19.6

*Based on Hertzian analysis.
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FIG. 2 (color online). Measured area function for the
Berkovich indenter at depths up to 100 nm (circles) compared
to the area function used in our calculations.

mine the load and displacement relationships for elastic
deformation before a pop-in event:

2_ 2 2 _ 2
P= 2E,{a—c2 + 4Cia” — G |:z - arcsin(wﬂ}

4C,  16C,\/C; |2 4Cia> + C3
(7
and
a [ C?2 — 4C,d>
h=——| = —arcsin[ 21"} | 8
N B b C%ﬂ ®)

For a [110] single crystal of Cr3Si (E, = 293 GPa) the P-h
curve predicted by Eqs. (7) and (8) is compared to experi-
mental data at loads below the pop-in events in Fig. 3. The
theoretical P-h curve matches the experimental loading
curve remarkably well, thus validating the approach. It
should also be noted that the load-displacement data are
well described by the power law relation P = Ch™, where
m = 1.69 (see Fig. 3). The observed exponent, m = 1.69,
lies between those for spherical and conical indenters (m =
1.5 and 2, respectively). This reinforces the notion that, in
the depth range of interest, the shape of the Berkovich
indenter transitions from spherical to conical and cannot
be adequately described by either geometry alone.
Although Sneddon’s method can be used to determine
the load-displacement relationship, it does not provide for
evaluation of the stress field. Schwarzer and Pharr [18]
have shown that a mathematical formalism developed by
Fabrikant can be useful in evaluating the stresses for an
indenter that can be approximated by the power law shape
z = A(r/a)™, but the evaluation requires numerical meth-
ods that are not straightforward to implement. Instead,
elastic finite element simulations were employed here to

Displacement h (nm)

FIG. 3 (color online). Comparison of experimental measure-
ments (circles) to predictions of the elastic load-displacement
behavior for a (110) Cr;Si single crystal below its first pop-in
event.

determine the indentation stress fields and evaluate the
maximum resolved shear stresses at the pop-in loads (as-
suming that Cr3Si is elastically isotropic with E, =
273 GPa). The accuracy of the finite element simulations
was tested by performing computations for a spherical
indenter and comparing to the known Hertzian stress field
(see, for instance, Johnson [7]). The stresses were found to
be within 5% of the Hertzian values.

To resolve the shear stresses onto the (100)[001] slip
system, the procedure used by Gerberich et al. [5] was
employed. Contour plots of the resolved shear stresses at
the experimentally observed pop-in loads for three crys-
tallographic orientations are shown in Fig. 4. For purely
geometric reasons, the maximum resolved shear stress
occurs at a different position beneath the contact surface
for each orientation, a point that has not been properly
recognized in some previous analyses [3,6]. As shown in
Table I, the maximum resolved shear stresses, 7[jog] =
18.1 GPa, p;9; = 22.3 GPa, and 7,1, = 21.7 GPa, are
all within 12% of the theoretical shear stress estimated us-
ing the relation 7y, = G/27 = 20.5 GPa (G = 129 GPa
[15] for Cr3Si). The experimental results and analysis are
thus consistent with the notion that the first pop-in event
corresponds to the nucleation of dislocations when the
theoretical shear strength is exceeded.

It is also useful to compare the theoretical strengths
evaluated using our new procedure to predictions based
on the spherical tip assumption and Hertzian analysis. To
do so, we have computed the maximum resolved shear
stresses, Tg, at pop-in events from the Hertzian stress field
and include in Table I values for spheres of different radii.
The radius R = 232 nm is the value consistent with our
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FIG. 4 (color online). Contour plots of resolved shear stress at
the pop-in load for three crystallographic orientations in Cr;Si.

measured area function in the limit of small penetration
depth. Another natural value to choose is that derived from
analysis of the load-displacement data up to the point of
pop-in events assuming Hertzian contact. Using the stan-
dard Hertzian relation in Eq. (1), values of the effective tip
radius, R, derived for the three low-index orientations in
Cr3Si are as follows: [100] R = 412 nm; [110] Ry =
379 nm; [111] R, = 358 nm. The maximum resolved
shear stresses based on these values are included in
Table 1. The value R = 232 nm overestimates T, by as
much as 41%. On the other hand, the effective radii, R,
give more reasonable estimates, suggesting that Hertzian
analysis of the P-h data prior to pop-in events is probably
the best way to estimate the relevant tip radius.

It should be noted that, although the method developed
here is a useful extension of previous analyses that helps to
account for potentially important influences of the indenter
tip shape, two additional factors may also be important.
First, the influences of elastic anisotropy need to be con-
sidered in the ways they may influence the stress field.
Second, all analyses to date have ignored the fact that there
are sharp edges on the indenter. These undoubtedly influ-
ence the nature of the stress field, even at the shallowest
depths, as evidenced by the observation that images of even
the smallest hardness impressions are usually triangular in
appearance rather than circular. Small spherical indenters,
to the extent they can be obtained and calibrated, would
avoid the edge problem in the determination of theoretical
strengths from pop-in loads.
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