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Vorticity Cutoff in Nonlinear Photonic Crystals
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Using group-theory arguments, we demonstrate that, unlike in homogeneous media, no symmetric
vortices of arbitrary order can be generated in two-dimensional (2D) nonlinear systems possessing a
discrete-point symmetry. The only condition needed is that the nonlinearity term exclusively depends on
the modulus of the field. In the particular case of 2D periodic systems, such as nonlinear photonic crystals
or Bose-Einstein condensates in periodic potentials, it is shown that the realization of discrete symmetry
forbids the existence of symmetric vortex solutions with vorticity higher than two.
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Vortices are complex waves characterized by a phase
singularity, a point where phase is not defined and con-
sequently vortex amplitude vanishes [1]. This feature is
shared by all complex waves and appears in many different
nonlinear systems, ranging from fluid dynamics to pho-
tonics. The most prominent characteristic of a vortex is that
energy flows around the phase singularity in such a way
that its flux is quantized. This flux quantization is reflected
in a dislocation of the vortex phase which changes as an
integer multiple of 27 when one performs a complete tour
around the singularity. This integer number is referred to as
vorticity (also known as winding number, ‘“‘topological
charge”, or spin). An optical vortex with a rotationally
invariant amplitude in a nonlinear Kerr medium, experi-
mentally observed in homogeneous self-defocusing media
[2], can be understood as an eigenmode of the equivalent
rotationally invariant waveguide generated by itself [3].
Thus, a vortex appear as an object carrying well-defined
angular momentum: ¢, = ¢’ f(r). In this case, angular
momentum and vorticity are the same integer number; a
consequence of the continuous O(2) symmetry of the
operator defining the equivalent waveguide. However, in
systems such as 2D nonlinear photonic crystals or Bose-
Einstein condensates in 2D periodic traps this O(2) sym-
metry is replaced by a discrete-point symmetry. Angular
momentum is no longer well defined and thus the angular
momentum-vorticity equivalence is lost. Nevertheless, op-
tical vortices have been predicted to exist in 2D periodic
photonic crystals [4,5] and in photonic crystal fibers [6],
and experimentally observed in optically-induced photonic
lattices [7]. Although these solutions cannot any longer
have well-defined angular momentum, certainly all of them
present neat phase dislocations that can be characterized by
an integer vorticity value. In this Letter, we will prove how
to reinterpret vorticity in terms of the rotational properties
of vortex solutions without resorting to the angular-
momentum concept. As a result, severe restrictions on
vorticity values will be found using group-theory
arguments.

Let us consider the following general nonlinear equation
for stationary states:
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where L, is a linear field-independent self-adjoint operator
(normally dependent on gradients and functions of the
transverse coordinates) and Ly;(|¢|) is the nonlinear
field-dependent piece of the full operator acting on the
field ¢. This equation is valid for all types of 2D systems
in which the nonlinearity depends on the field through its
modulus. Many different systems can be modeled using an
equation that can be written in the form given by Eq. (1).
We are interested in systems that, besides being described
by Eq. (1), are invariant under some discrete-symmetry
group G: [L, G] = 0 (L = Ly + Lyp). This means that we
assume that all linear and nonlinear coefficients appearing
in the operators defining Eq. (1) are invariant under the G
group. Our goal is to study the implications that the real-
ization of discrete symmetry has on the characterization of
vortex solutions of Eq. (1).

The key concept in our approach is the so-called group
self-consistency condition. This condition establishes that
if a system described by Eq. (1) is invariant under some
discrete-symmetry group G then any of its solutions either
belongs to one representation of the group G or to one of its
subgroups G’ (G’ C G) [8]. Note that the identity group is
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FIG. 1. Two examples of structures invariant under 2/n
rotations plus specular reflections on the x and y axis:
(a) sixfold rotation axis (Cg, group), and (b) eightfold rotation
axis (Cg, group).
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always a subgroup of any group and, therefore, asymmetric
solutions also satisty the group self-consistency condition
[5]. In this Letter, however, we will focus on symmetric
solutions exclusively.

The elements of point-symmetry groups in a plane are
rotations through integral multiples of 27/n about some
axis (called an n-fold rotation axis), reflections on a mirror
plane containing the axis of rotation and combinations of
both. Groups containing an n-fold rotation axis constitute
the C, groups. When, in combination with the n-fold
rotation axis, these groups have mirror planes, one gener-
ates the so-called C,, groups. In Fig. 1 we give two
examples of structures exhibiting Cg, and Cg, point
symmetries.

We will prove next how vorticity is affected by the finite
order of the n-fold rotation axis defining the C,, (or C,,,)
group. In order to do so, we need first to properly character-
ize the different representations of a C,, group. Since C,
groups are Abelian, its representations are one-dimen-
sional and given by a single scalar complex number (the
character of the representation) [9]. This scalar is nothing
but a root of unity of order » and thus the representations of
the C, group are given by {I, ™', ..., ™ ..., €/?} for
evennand{l, e*! ..., €= ..., €=""1/2} for odd n, where
€ = exp(27i/n). In Fig. 2 we present, as an example, the
construction of the roots of unity for the C¢ (even n) and Cs
(odd n) groups. Each representation can be labeled by the
natural number / and, when present, by its sign. We denote
it by D,y I €N, s= =*). No sign is needed for the
identity representation D), (I =0) nor for D, (I =
n/2, even n). A state belonging to representations with [ #
0, n/2 can be written as |, s) with 0 <[<n/2 (if n is
even)or 0 <! = (n — 1)/2 (if n is odd). When we act with
a group operator G (representing a discrete rotation of
angle 277/n) on a function belonging to a representation
D, ,, it transforms as G¢p; = €’ ¢b;, where [=sl(s= =+,
1 € N). Clearly too, Gy = ¢ and G, o = €2,/
(even n). If there is no other symmetry involved, [L, G] =
0 implies that every one-dimensional representation is
characterized by a different L eigenvalue: Lo = —E;¢by.
Representations are thus nondegenerated.

We proceed now to explicitly construct functions be-
longing to / # O representations. Let us consider the com-
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FIG. 2. Roots of unity diagrams displaying the representations
of: (a) C¢ and (b) Cs.

plex coordinate vector u = x + iy = re'?. Integer powers of
u have well-defined transformation properties under a
27r/n rotation: u

16=6+2m/n _, elyl  Therefore, we can
easily construct a function in the D, representation of
C, as

biw) = ul (), @)

g) being a function in the D, representation of C,.
Clearly, G¢; = € ;.

The representations of C,, (discrete rotations plus re-
flections) are easily obtained from those of C,, groups [9].
The existence of the extra symmetries provided by mirror
reflections yields to degeneracies for high-order (I # 0)
representations. These states are now doubly degenerated;
they form pairs of complex-conjugated functions (¢;, ¢7)
with the same L eigenvalue: L¢p; = —&;¢;. Remarkable
exceptions are the 1), and D, /, representations. Because
of their different behavior under mirror reflections there are
two distinct nondegenerated one-dimensional / = O repre-
sentations: |0; ++) and |0; ——). They transform differ-
ently under reflections with respect to the x and y axis:
R.,10;++) = +[0; ++) and R,,|0;——) = —|0; ——).
The |0; ++) state has maximal symmetry. Fundamental
solitons belong to this identity representation of C,,,,. In the
same way, there are also two different nondegenerated one-
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FIG. 3. Lowest order eigenfunctions of a nonlinear operator L
generated by a soliton solution in the identity (fundamental)
representation of Cg,. The symmetry of the full operator is C,:
[L) Cﬁv] = 0.
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dimensional representations with [ = n/2 (even n):
|n/2;+—) and |n/2; —+). The distinction is made by
R, reflections. In Fig. 3 we show the lowest order eigen-
functions of the spectrum of a Cg,-invariant operator self-
consistently generated by a fundamental soliton solution
(bfuna = bo++) L = Lo+ Lnp(Idgunal) (see the final
section of the Letter for details on the physical system
associated to L). We easily recognize, from lower to higher
values of &, the |0; ++) self-consistent state (i.e., the
fundamental soliton), the doubly degenerated |1; =) and
|2; =) states and the nondegenerated |3; +—) state. The
rest of the spectrum, including continuum delocalized
states, systematically falls into the representations de-
scribed above.

Vorticity v can be defined as the integer variation (in 27
units) that the phase of a complex field experiments under a
24 rotation around a rotation axis. Solutions with nonzero
vorticity are called vortices of order v. They are charac-
terized by their rotation axis, whose intersection with the
2D plane defines the vortex center, where their amplitude
vanishes. If ®(r, §) represents the phase of a complex
vortex field of order v given by f, = |f,le'®, then
®(r, 6 + 271) — O(r, #) = 277v, where the polar coordi-
nates are referred to a reference frame centered on the
rotation axis. For systems enjoying a 2D point symmetry,
this axis is naturally given by the n-fold rotation axis of the
corresponding C,, (or C,,,) group.

According to the group self-consistency condition, all
symmetric solutions of Eq. (1) in a system with C,, sym-
metry have to lie on the representations of C,, or of any of
its subgroups. Let us consider now a solution ¢;in the D,
representation of C,, given by Eq. (2). Its phase will be

given by arges(r, ) = 16 + argg/)g)(r, 0). Since qﬁg)(r, 0)
is invariant under rotations, arg¢(r, 0 + 27) =
argi(r, 6) + 2ml. Therefore we find the important rela-
tion between the index representation and vorticity:

v=1 3)

Vortices are thus solutions belonging to D), ; representa-
tions with [ # 0. There is, however, no vortex associated to
[ = n/2 (even n). It can be proved that ¢,, /2 is areal field,
so that its argument is a function that can only take the
values 0 or 7. More explicitly, from Eq. (2), ¢,/, ~

cos[nf/2 + argqbg’/ 2(r, 0)], which has the phase behavior
of alternating signs typical of a nodal soliton and not of a
vortex [8]. In C,,,,, the behavior of the ¢,,/» +— and ¢,,/5 _ +
functions is also of the nodal-soliton type, as one can check
by observing the phase of the |3; +—) state in Fig. 3.

Let us summarize now our main conclusions. First, if a
system is invariant under a C, or C,, point-symmetry
group, the solutions of Eq. (1) belong to representations
of these groups or of their corresponding subgroups.
Second, symmetric solutions of Eq. (1) are characterized
by the representation index [, which has an upper bound
fixed by the order of the group: I < n/2 (even n) and | =

(n —1)/2 (odd n). Third, the vorticity v of the vortex
solutions of such a system has a cutoff due to Eq. (3) and
the upper bound for I:

lv] <n/2(even n) and |v| = (n—1)/2(odd n). (4)
Note that the group of continuous rotations on a plane can
be understood as the limiting case O(2) = lim,_,,C, and,
thus, Eq. (4) correctly establishes the absence of a cutoff
for it (Jv| < o).

When we deal with 2D periodic systems, the realization
of discrete symmetry has particular features as it is well-
known in crystallography [10]. The crystal structure is
constructed according to a pattern that repeats itself to
“tessellate” the 2D plane in such a way that only patterns
that exhibit a selected set of symmetries can satisfy this
property. The important result for us here is that pattern
periodicity establishes a restriction on the order of discrete
rotations allowed in plane groups. Only n-fold rotations of
order 2, 3, 4, and 6 are permitted in a 2D periodic crystal
[10].

The previous group analysis has important implications
for 2D nonlinear periodic systems. The maximum n-fold
rotation symmetry compatible with periodicity is a sixth-
fold rotation, which means that the maximum value for the
order n of C, and C,, point-symmetry groups in 2D
periodic systems is n = 6. Consequently, the point-
symmetry group of a solution cannot exceed this order:
n = 6. Since vorticity is restricted by the order of the
point-symmetry group according to Eq. (4), we come up
to the conclusion that in 2D nonlinear periodic systems of
the type described by Eq. (1) vorticity has a strict bound:
|v| = 2. Putting this into words, there are no vortices of
order higher than 2 in 2D nonlinear periodic systems
described by Eq. (1).

In order to illustrate our previous theoretical results, we
have numerically studied a realistic system, namely, a
photonic crystal fiber (PCF). A PCF is a type of 2D
photonic crystal consisting on a regular lattice of holes in
silica (characterized by the hole radius a and the lattice
period or pitch A) extending along the entire fiber length.
When one considers that the silica response is nonlinear
(nonlinearity represented by the nonlinear coefficient 1y,
defined in Ref. [6]), a PCF becomes a 2D nonlinear pho-
tonic crystal. The nonlinear propagation modes of a PCF
for monochromatic illumination in the scalar approxima-
tion verify Eq. (1) with £ = — B2, B being the mode
propagation constant (see [6]). Among possible hole-
distribution geometries we choose that based on a triangu-
lar lattice with Cg, symmetry [see Fig. 1(a)]. The reason of
our symmetry choice is simple. As proved before, the Cy,,
group provides the highest vorticity solutions since it
corresponds to the maximal point symmetry achievable
in a 2D nonlinear photonic crystal. Note that although we
simulate an ideally infinite structure, the group-theory
results equally apply to finite size systems. In Fig. 4 we
find the first three (from lowest to highest value of 32)
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FIG. 4. Higher-order solitons for a periodic C4, PCF: (a)-
(b) First- and second-order vortex pairs, |1;*) and [2; +);
(c) nodal soliton of order 3, |3; +—).

higher-order solitons of a perfectly periodic PCF (without
defect) calculated for the values ¢ =5 um, A =26 um,
and A = 1064 nm at y = 0.01. In Fig. 5 we present the
same first three higher-order solitons, but for a PCF with
periodicity broken by the presence of a defect (absence of a
hole). Note that in both cases the symmetry group is Cg,
and that, in agreement with our previous result, the maxi-
mum vorticity allowed is two. The soliton solution with
/=73 is not a vortex. As predicted by group theory, it
presents a binary phase structure (corresponding to a
|3; + —) state) of the nodal-soliton type [8]. It is interesting
to check the generality and accuracy of the group-theory
approach using these numerical examples. The spectrum of
higher-order soliton solutions is perfectly explained by our
previous group-theory arguments, nevertheless the peri-
odic (Fig. 4) and nonperiodic (Fig. 5) photonic crystal
structures present notable differences. Despite that they
share the same Cg, symmetry, a description in terms of
weakly interacting localized fundamental solitons on lat-
tice sites (the equivalent of the tight-binding approxima-
tion in solid state physics) [5] can only be valid in the
perfectly periodic case. As is apparent in Fig. 4, this
localization feature is clear in the amplitude and phase of
vortex and nodal-soliton solutions in the periodic PCF.
However, single fundamental solitons are no longer recog-
nizable in the vortex and nodal solitons of Fig. 5 due to the
presence of the periodicity-breaking defect. One can think
of a situation of strongly interacting solitons causing the
“tight-binding approximation’’ to stop being valid. Despite
this fact, our main results concerning the nature of solu-
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FIG. 5. Same as in Fig. 4 but in a PCF with defect.

tions and, more specifically, the restrictions on vorticity,
remain valid with complete generality. On the other hand,
these results pave the way for the manipulation of the
vortex charge by means of external systems owning dis-
crete symmetry. This singular property of discrete-
symmetry systems can lead to applications in areas like
optical data storage, distribution, and processing [1].
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