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Exact Nondipole Kramers-Henneberger Form of the Light-Atom Hamiltonian: An Application
to Atomic Stabilization and Photoelectron Energy Spectra
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The exact nondipole minimal-coupling Hamiltonian for an atom interacting with an explicitly time- and
space-dependent laser field is transformed into the rest frame of a classical free electron in the laser field,
i.e., into the Kramers-Henneberger frame. The new form of the Hamiltonian is used to study nondipole
effects in the high-intensity, high-frequency regime. Fully three-dimensional nondipole ab initio wave
packet calculations show that the ionization probability may decrease for increasing field strength. We
identify a unique signature for the onset of this dynamical stabilization effect in the photoelectron
spectrum.
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The general field of laser-matter interactions is charac-
terized by impressive progress in light-source technology.
Light sources with pulses of shorter and shorter duration
and ever increasing intensities are being developed. Pulses
containing only a few cycles and with a duration of less
than 10 fs are now commercially available [1]. Intensities
of 1014 W=cm2 are routinely provided, and intensities 2
orders of magnitude higher, reaching the field strength of
the Coulomb interaction in atoms and molecules, are not
unusual. Femtosecond laser pulses have been used to pro-
duce coherent extreme-ultraviolet pulses of attosecond
duration, and the expression ‘‘attosecond metrology’’ [2]
was coined for the investigation of matter with such short
pulses [3]. Other developments include the large-scale
intense free-electron laser projects at DESY (Hamburg,
Germany) and SLAC (Stanford, USA). The TESLA test
facility in Hamburg has begun operation in the far-
ultraviolet regime and, e.g., a study of the interaction of
intense soft x rays with atom clusters was reported [4]. The
clusters absorbed energy much more efficiently than an-
ticipated from existing models, and the physical mecha-
nism responsible for the excess in the absorbed energy is
currently subject to some controversy [5].

Typically the laser-atom interaction is described in the
dipole approximation where several equivalent formula-
tions exist; the most popular ones being the velocity gauge,
the length gauge, and the Kramers-Henneberger frame [6].
It is, however, clear that the new light sources alluded to
above pave the way for studies of atomic and molecular
systems under extreme nonperturbative conditions [7]. In
the case of atoms interacting with light from the vacuum-
ultraviolet free-electron laser the dipole approximation
cannot be expected to be valid [8]. Thus, motivated by
the need to include the full k � r term in the description of
the light-matter interaction, we here revisit the question of
equivalent formulations of electrodynamics.

We transform the exact nondipole minimal-coupling
Hamiltonian for an atom in an explicitly time- and space-
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dependent field into the rest frame of a classical free
electron in the laser field. In the dipole approximation,
this frame is known as the Kramers-Henneberger frame
[9]. Our transformed exact nondipole Hamiltonian takes a
simple form and is very useful for the discussion of strong-
field dynamics. We apply it to the study of H in the high-
intensity, high-frequency regime, and confirm the phe-
nomenon of atomic stabilization, i.e., the possibility of
having a decreasing ionization probability/rate with in-
creasing intensity (for reviews see, e.g., [10]). Most im-
portantly, we point out that the onset of the dynamic
stabilization can be directly observed from electron energy
spectra. [Atomic units (a.u.) with me � e � @ � 1 are
used throughout. All derivations are straightforwardly gen-
eralized to atoms and molecules involving more electrons.]

The minimal-coupling scheme determines the
Hamiltonian for a charged particle in an electromagnetic
field through the vector potential A��� with � � !t� k �
r, and k the wave number. The scheme implies that the
canonical momentum is obtained by p ! p� qA and for
an electron of charge q � �1 in atomic units, we have p�
A, and the time-dependent Schrödinger equation reads

i@t�v�r; t� �
�
1

2
�p�A����2 � V�r�

�
�v�r; t�; (1)

where the subscript v refers to the velocity gauge. The
advantage of this formulation is that the spatial dependence
of the field is explicitly accounted for through its presence
in the vector potential. A disadvantage is that the interac-
tion is not expressed in terms of the physical E and B fields.
Also numerically, the evaluation of the action of the A � p
term can be quite involved unless a diagonal representation
of �v with respect to this operator is applied. Until now
only the alternative multipole formulation of Power-
Zienau-Woolley [6,11] has, in principle, kept the spatial
dependence to all orders. The multipolar form represents
the interaction in terms of the physical fields and the
electron coordinate r, but, as the name suggests, it is
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FIG. 1. Ionization and ground state probability for a two-
dimensional model atom [16] in the nondipole (solid curve)
and dipole (dashed curve) descriptions vs electric field strength
for a 5 cycle pulse with ! � 1 a:u:
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inherently designed to provide an expansion of the light-
matter interaction, and consequently very impractical if
one wishes to retain k � r to all orders.

Here, we transform the Schrödinger equation into a new
form by applying a nondipole Kramers-Henneberger trans-
formation. Let

�KH � U�v � exp	i���� � p
�v; (2)

where

� ��� �
1

!

Z �

�i

d�0A��0� (3)

represents the quiver motion relative to the laboratory
frame of a classical free electron in the field. The
Hamiltonian corresponding to the new point of view is
obtained by taking the time derivative on both sides of
(2), and by using (1) for �v, we obtain i@t�KH�r; t� �
HKH�KH�r; t� with

HKH � UHvUy � i�@tU�Uy: (4)

To evaluate the effect of the unitary translation operators in
(4), we use the operator identity known as the Baker-
Hausdorff lemma [12] and take advantage of the
Coulomb gauge restriction 	p;A
 � 0 and k �A � 0.
The resulting Hamiltonian reads

HKH �
p2 � A2

2
� V�r� �� �

k2

2

�
d�
d�

� p

�
2

�
ik2

2

d2�

d�2 � p�

�
d�
d�

� p

�
�k � p�; (5)

which holds for a general elliptically polarized field.
Within the dipole approximation A and � are space inde-
pendent, the last three terms are absent, and (5) reduces to
the well-known result [9]. In the nondipole case, the im-
portance of these terms is readily understood, e.g., in terms
of their effect on a continuum wave function. The two
terms proportional to k2 are of the order of E2

0v
2=�!2c2�

and E0v=c
2, respectively, whereas the last term is of order

E0v
2=�!c�. We thus see that the effect of the dominant

term on a wave function is reduced by a factor E0=�!c�
compared to the p2 term. The factor E0=! is precisely the
quiver velocity of the electron vquiver, so we expect that the
last three terms may be neglected as long as vquiver=c � 1.
Whenever this condition is fulfilled, the nonrelativistic
approach is automatically justified as well. As it turns
out, for the field parameters considered here, the effect of
the nondipole terms is effectively given by the spatial
dependence of the vector potential in the A2 term.

As a first application of the new form of the Hamiltonian
we consider the interaction with high-intensity, high-
frequency fields. In this so-called stabilization regime
[10], atoms may go through a region of decreasing ioniza-
tion for increasing field strength. Stabilization was experi-
mentally observed with Rydberg atoms [13]. With the
development of new light sources, dynamic stabilization
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of ground state atoms is, however, expected to be within
experimental reach in the near future [14].

Nondipole terms were investigated in approximate ways
earlier and found to have a detrimental effect on the
stabilization [15,16]. The relative role of the different non-
dipole terms in (5) is now discussed for a two-dimensional
model atom [16]. The ground state was exposed to a laser
pulse propagating in the x direction and of linear polariza-
tion up along the z axis corresponding to the vector poten-
tial A��� � E0

! f��� sin���up with f��� the envelope and
E0 the electric field amplitude. The wave function was
propagated on a Cartesian grid by means of the split-step
operator technique [17]. A 5-cycle laser pulse with central
frequency ! � 1 a:u: (46 nm) corresponding to the pulse
duration T � 760 as, and with carrier-envelope f��� �
sin2���

!T�, was employed. The intensity range was set to 0<
I0 < 1:4� 1019 W=cm2. Total ionization and ground state
probability versus laser intensity is displayed in Fig. 1. The
population not accounted for in the figure is left in excited
states. The total effect of the last three terms in the
Hamiltonian (5), as well as the spatial dependence of the
quiver amplitude ��r; t�, is so small that it cannot be
resolved on the scale of Fig. 1.

We have, accordingly, justified that for the parameters
under concern, it is a very accurate approach to apply the
Hamiltonian (5), neglecting the last three additional kinetic
energy terms arising from the transformation (2), to a fully
three-dimensional study of ionization of a real ground state
atom by intense short wave light field beyond the dipole
approximation. We consider H�1s� exposed to 5-cycle
laser pulses in the attosecond range with central frequen-
cies ! � 1 a:u: and ! � 2 a:u:. The time-dependent
Schrödinger equation is solved numerically based on a
split-step operator approximation on a spherical grid as
detailed elsewhere [18]. The wave function is expanded on
the grid points 	�ri;�jk� � �ri; !j; "k�
 as
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��ri;�jk; t� �
Xlmax;mmax

l;m

fl;m�ri; t�Yl;m��jk�; (6)

and the initial field-free H�1s� state is obtained from the
exact analytical expression. Reflection at the edges r �
rmax � 200 a:u: is avoided by imposing an absorbing
boundary. For convergence, we include harmonics up to
lmax � 29, check for gauge invariance, use propagation
time step �t � 0:01 a:u:, and set �r � 0:2 a:u:.
Doubling rmax only led to minor changes in the results.
This confirms that in the present frequency regime
Rydberg states are not dynamically involved [19].
Photoelectron probability distributions are calculated by
projecting the wave function onto the field-free (discre-
tized) continuum states. We note that the presence of non-
dipole terms will lead to a population of different m values
in (6).

In Fig. 2 total ionization and ground state probabilities
are shown for the fully three-dimensional case in the non-
dipole and dipole limits for two different frequencies. We
observe that the dipole approximation remains valid up to
field strengths of the order of 10 a.u., and we find in general
only a small effect of the nondipole terms on stabilization.
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FIG. 2. Upper panel: As Fig. 1, but for the fully three-
dimensional case with the system initially prepared in the
H�1s� state. Lower panel: Corresponding results for ! � 2 a:u:.
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We now turn to the central question of how stabilization
can most efficiently be experimentally detected.
Measurement of absolute probabilities will require control
of all parameters of the experiment: atom density, pulse
characteristics, repetition rates, electron counts, etc.. We
therefore suggest measuring the energy-differential photo-
electron spectrum. Figure 3 shows the ionization probabil-
ity density dP=dE vs electric field strength and energy E of
the ionized electron with the full interaction potential
(upper panel) and with the time-averaged Kramers-
Henneberger potential (middle panel) [10],

V0�&0; r� �
1

T

Z T

0
V�r� ��dt; (7)

where &0 � E0=!2 is the quiver amplitude. The dipole and
nondipole results are practically identical, and only the
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FIG. 3 (color). Upper panel: Ionization probability density
dP=dE for H�1s� vs electric field strength and energy of the
ionized electron for a squared shaped 5-cycle pulse (380 as) with
! � 2 a:u: (23 nm) by fully three-dimensional calculations.
Middle panel: Results from the time-averaged potential (7).
Lower panel: Total ionization probability in the dipole approxi-
mation (solid curve) and for the time-averaged potential (7)
(dashed curve).
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dipole results are shown in Fig. 3. In addition, the charac-
teristic features observed in the figure are insensitive to the
actual shape of the pulse. For lower field strengths a regular
pattern of multiphoton resonances corresponding to ab-
sorption of 1!, 2!, or 3! from the field is present.
However, the multiphoton ionization process weakens at
higher intensities as the stabilization sets in. Simul-
taneously, there is a steady growth in the portion of low-
energy photoelectrons in the spectrum which can be as-
signed to V0 of (7). That V0 is responsible for the growth in
the low-energy spectrum is readily seen by comparison of
the upper and middle panels. The processes leading to
ionization effectively divide into two competing classes:
The multiphoton ionization superimposed on a monotoni-
cally increasing ‘‘background’’ ionization process due
solely to V0. This is explicitly illustrated in the lower panel
of Fig. 3, where the total ionization probability vs electric
field strength is shown [20]. Multiphoton ionization domi-
nates at lower field strengths, whereas the picture is the
opposite at higher values of E0. The ionization due to the
V0 potential reflects to what extent the laser pulse is turned
on and off adiabatically, and in a ‘‘sudden approximation’’
picture it represents the lack of overlap between the field-
free and the field-dressed states. Common in both photo-
electron spectra is the presence of peaks in the probability
density which cannot be attributed to multiples of !.
Instead, they are a result of the nonadiabatic turn-on and
turn-off of the field and can be associated with the higher-
order Fourier components of the pulse.

In summary, we have presented a new formulation of the
interaction between atoms and light maintaining full spa-
tial dependence of the fields. We have analyzed the terms
in the interaction Hamiltonian and argued, supported by
numerical evidence, that certain terms can be neglected.
For the present field parameters, the main nondipole effects
come from A���2. As an application, we have considered
the phenomenon of dynamic stabilization in intense high-
frequency fields. We have shown by full three-dimensional
wave packet simulations that the nondipole terms do not
destroy the stabilization effect, and most importantly that
the photoelectron spectra in the stabilization regime shows
very characteristic features: After onset of stabilization all
ionized electrons have very low kinetic energy. Thus, by
simply measuring the energy of the released electrons
stabilization can be detected.
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