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We derive an analytical lower bound for the concurrence of a bipartite quantum state in arbitrary
dimension. A functional relation is established relating concurrence, the Peres-Horodecki criterion, and
the realignment criterion. We demonstrate that our bound is exact for some mixed quantum states. The
significance of our method is illustrated by giving a quantitative evaluation of entanglement for many
bound entangled states, some of which fail to be identified by the usual concurrence estimation method.
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Entanglement is a striking feature of quantum systems
and is the key physical resource to realize quantum infor-
mation tasks such as quantum cryptography, quantum tele-
portation, and quantum computation [1], which cannot be
accounted for by classical physics. This has provided a
strong motivation for the study of detection and quantifi-
cation of entanglement in an operational way. Despite a
great deal of effort in past years [2—13], for the moment,
only partial solutions are known for generic mixed states.
As for quantitative measures of entanglement, there is an
elegant formula for 2 qubits in terms of concurrence,
which is derived analytically by Wootters in Ref. [4].
This quantity has recently been shown to play an essential
role in describing quantum phase transition in various
interacting quantum many-body systems [14] and may
affect macroscopic properties of solids significantly [15].
Furthermore, the value of concurrence will provide an
estimation [13] for the entanglement of formation (EOF)
[16], which quantifies the required minimally physical
resources to prepare a quantum state. It is thus very im-
portant to have a precise quantitative picture of entangle-
ment in order to get a better insight into the corresponding
physical systems.

However, calculation of the concurrence is a formidable
task as the Hilbert space dimension is increasing, like in the
case of two parts in a real solid-state system considered for
quantum computation. Good algorithms and progresses
have been obtained concerning lower bounds for a qubit-
qudit system [10,11] and for bipartite systems in arbitrary
dimension [5,13]. Considerable progress is made in [13] to
give a purely algebraic lower bound. Nevertheless, an
optimized bound generally involves numerical optimiza-
tion over a large number of free parameters in a level (at
least m(m — 1)n(n — 1)/4 for a m ® n bipartite system,
where m, n are Hilbert space dimension for two subsys-
tems respectively [5,11,13]). This leads to a computation-
ally untractable problem for a realistic system with a
higher dimension. In addition, these methods for evalu-
ating concurrence cannot detect reliably arbitrary en-
tangled states even if one applies all known optimization
methods [13].
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Our aim in this work is to improve this situation dra-
matically by giving an analytical lower bound for concur-
rence of any mixed bipartite quantum state. We find an
essential quantitative relation among this measure and
available strong separability criteria. A functional relation
is explicitly derived to give a tightly lower bound for the
concurrence. It is shown to be exact for some special class
of states. Our method is further demonstrated to be better
than the regular method for concurrence optimization, in
the sense that it can detect and give an evaluation of
entanglement for many bound entangled states (BES)
which cannot be identified by the latter. This also comple-
ments a number of existing methods involving numerical
optimization and provides a computational method to es-
timate manifestly the actual value of concurrence for any
bipartite quantum state.

We start with a generalized definition [17] of concur-
rence for a pure state |¢) in the tensor product H 4, ® H 4
of two (finite dimensional) Hilbert spaces H 4, H  for
2 systems A, B. The concurrence is defined by C(|y)) =

4/2(1 = Trp?), where the reduced density matrix p, is

obtained by tracing over the subsystem B. The concurrence
is then extended to mixed states p by the convex roof,

Clp) = {;ﬂ%}g piCU)), (1)

for all possible ensemble realizations p = 3, p;|¢; X,
where p; = 0 and X;p; = 1. For any pure product state
l), C(lh)) vanishes according to the definition.
Consequently, a state p is separable if and only if C(p) =
0 and hence can be represented as a convex combination of
product states as p = 3;p;p? ® p? where p? and p? are
pure state density matrices of the subsystems A and B,
respectively [18].

The key point of our idea is to relate directly the con-
currence and the Peres-Horodecki criterion of positivity
under partial transpose (PPT criterion) [2,3] and the re-
alignment criterion [6,7] by means of Schmidt coefficients
of a pure state. Let us first consider the concurrence for a
pure state. C(|¢)) is invariant under a local unitary trans-
formation (LU) [4,17]. Without loss of generality, we
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suppose that a pure m ® n(m =< n) quantum state has the
standard Schmidt form

|¢> = Z \/E |aibi>r (2)

where \/u; (i = 1,..., m) are the Schmidt coefficients, la;)
and |b;) are the orthonormal basis in H 4, and H g, re-
spectively. It is evident that the reduced density matrices
p4 and pp have the same eigenvalues of w;. It follows

ciwy =2(1 - St )=4Sum, @

i<j

which varies smoothly from 0, for pure product states, to
2(m — 1)/m for maximally entangled pure states.

In order to derive a quantitative connection with the PPT
criterion and the realignment criterion, we recall some
details of the two criteria. Peres made first an important
step forward for separability criterion in [2] by showing
that p™s = 0 should be satisfied for a separable state, where
p’+ stands for a partial transpose with respect to the sub-
system A. p7+ = 0 is further shown by Horodecki et al. [3]
to be sufficient for 2 X 2 and 2 X 3 bipartite systems.
[|p74]| is LU invariant as shown in Refs. [2,19] where
[| - || stands for the trace norm defined by ||G|| =
Tr(GG1)'/2. Thus, it is sufficient to consider only the
pure states with standard Schmidt form given by Eq. (2).
It is easy to see that p = |} i| = E,j\/,u—,u,,la :bi)a;b|
and p’s = X, ; /i;@;laib;)Xa;b;|. Then we arrive at

lp™ll = I|Zm|a bXb;ailll
=1I> ym; laiXbl @ > i bl
i i

= oot =IGI = (Y vi). @

where G = X, /ft;la;)(b;l. In this derivation we have used
the unitarily invariant property of the trace norm when
applying the elementary column transformation: {a;b jI —
(b;aj| in the derivation of the first formula. The last
formula is obtained from the observation that GGT =
> JEE laiXbil - 1b;Xai| = Y pilaiXail, the prop-
erty of the trace norm ||P ® Q|| = ||P|| - ||Ql| and the fact
that ||G|| is the sum of the square root of eigenvalues w; of
GGH.

Another complementary operational criterion for sepa-
rability called the realignment criterion is very strong in
detecting many of BES [6,7] and even genuinely tripartite
entanglement [8]. Recently there has been considerable
progress in the further analysis, and in finding stronger
variants and multipartite generalizations for this criterion
[9]. We recall that this criterion states that a realigned
version R(p) of p should satisfy ||R(p)|| =1 for any
separable state p. R(p) is simply R(p);; 1 = pi ji Where
i and j are the row and column indices for the subsystem A

respectively, while k& and [ are such indices for the sub-
system B [6—8]. ||R(p)|| is also shown to be LU invariant
in [7]. One has R(p) = %, ;. /iifx;la;a;)b;b;| for the
state Eq. (2), as follows easily from the definition.
Similar to (4) one has

IRl = |>° Vi la)bil @ Y yjla;

=lGeal=IGI = (3 vim).

where G = 2, /i;la;Xb;|. The last formula follows from
the  observation GGt = 3 i laXbi| - [b7) X
<aj| = Zipila;Xa;l.
We now derive the main result of this Letter.
Theorem.—For any m ® n(m = n) mixed quantum state
p, the concurrence C(p) satisfies

Cp) = | max(lp™ L IR (I = 1. (6)
m(m — 1)

Proof.—To obtain the desired lower bound, let us
assume that one has already found an optimal de-
composition X;p;p’ for p to achieve the infimum of
C(p), where p' are pure state density matrices. Then
C(p) = 2,p,C(p’) by definition. —Noticing that
™Il = Zipill(p)™1l and IR (p)Il = Z;p; IR ()l
due to the convex property of the trace norm, one needs
to show C(p’) = /2/(m(m —1)(Il(p)"™ |l — 1) and C(p") =
V2/(m(m—1)(IR(p")|l — 1). For a pure state p’ one has
IR = (el = (S4/fx)* from Egs. (4) and (5),
where ./ are the Schmidt coefficients for the pure state
p'. From the expression of Eq. (3) it remains to prove that

= ((ZJ_> -1)

R

i<j

where we have used 3;u; = 1.

The verification of the inequality Eq. (7) is straightfor-
ward: by summing over all of arithmetic mean inequali-
ties pip; + pppy = 2 Jlip ey for i <joand k<[,
one gets

D> ik + pap)) =2 [T

<< <<
2
“(YvEm).  ®
i<j

It is seen that the number of appearance times is m(m — 1)
for the term w;u; on the left-hand side of Eq. (8).
Therefore Eq. (7) is confirmed and the conclusion,
Eq. (6) is proved.

The most prominent feature of the Theorem is that it
allows us to obtain an analytical lower bound for the
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concurrence without any numerical optimization proce-
dure. The bound has the same range as C(p) and goes

from 0 to \/2(m — 1)/m for pure product states and maxi-
mally entangled pure states, respectively. One can of
course renormalizes the maximum value C(p) to be 1
with a change of the corresponding constant factor.

We highlight some of the benefits of this new bound.
First, it serves to detect and gives a lower bound of con-
currence for all entangled states of two qubits and qubit-
qutrit system. This is so because the PPT criterion is
necessary and sufficient for separability in the two cases
[3]. Second, it generalizes to bipartite systems of arbitrary
dimension a relation given in [20] which is only valid for
the two qubits case, that the concurrence is lower bounded
by the negativity [19] (defined to be ||p”]| — 1). Third, for
any qubit-qudit system our bound can contribute an ana-
Iytical lower bound for EOF which is a convex function

of the concurrence, E(|¢)) = Hy([1 + /1 — C*(|))]/2)
where H,(-) is the binary entropy function [11]. In fact
our bound can furnish a lower bound of EOF E(p) for the
arbitrary bipartite state p [13]. Given any monotonously
increasing, convex function & satisfying E[C(|y))] =
=3, ulogyu,, one has E(p) = E[C(p)], with the right-
hand side bounded from below by our bound Eq. (6). Next
we consider some examples to illustrate further the tight-
ness and significance of our bound.

Example 1:Isotropic states.

Isotropic states [21,22] are a class of U ® U* invariant
mixed states in d X d systems

1—-F
pr= U= WD) + FIW )W )

where W) = \/1/d3% | liiy and F = (U |pp|W"), sat-
isfying 0 = F = 1, is the fidelity of pr and |¥*). These
states were shown to be separable for F < 1/d [21]. Tt is
shown in [6,19] that ||p1TcA|| = [|R(pp)ll = dF for F >
1/d. The concurrence C(p) for this class of states is
recently derived in [23] to be /2d/(d — 1)(F — 1/d) by
an extremization procedure. An application of our
Theorem gives C(p) = /2/[d(d — 1)](dF — 1) = C(p).
Thus, the bound gives a surprisingly exact value of the
concurrence for this sort of state.

Remark.—One can see that the equality of Eq. (8) holds
when |i/) are product states or maximally entangled states
(MES) (all w; are equal). Thus our bound will be tight if an
optimal decomposition for achieving concurrence only
involves product states and MES, and also attains the value
of |lp™#]| or ||R(p)|l. Roughly speaking, the difference
between our lower bound and the exact value of concur-
rence will be small if there are few deviations from these
two types of states in the optimal ensemble decomposition.
Exact estimation of this difference would be an interesting
subject for future study. In the case of isotropic states, it is
shown in [23] that the optimal decomposition falls exactly
into this class and the concurrence is just our bound.

Example 2:3 X 3 BES constructed from unextendible
product bases (UPB).

In [24], Bennett et al. introduced a 3 X 3 BES from the
following bases:

1
o) = ﬁl())(l(» — D),

1 1
5 lop3) = E)H) = 2))l0),

) = 5100 + 11) + 12)10) + 1) + ),

1
l4p1) —ﬁ(m) = D)I2),

l4n) = —=12)(11) — [2)),

from which the density matrix could be expressed as
1 4
=—(1Id — Nl ). 10
p=g(1d =3 ww) (10

A simple calculation gives ||p’#|| =1 and ||R(p)ll =
1.087 [7], therefore, C(p) = 0.05 according to the
Theorem. This shows that the state is entangled.

When BES are constructed from the UPB [24] given
by |4;) =19;) ® |Dyjmoas)» (G=0,...,4) with v, =
N[cos(27j/5), sin(27j/5), h], with j=0,...4, h=

V1 ++/5/2, and N = 2/+4/5 + /5, then the PPT state of
Eq. (10) gives ||[p"4]| = 1 and ||R(p)|| = 1.098 [7], there-
fore, C(p) = 0.056 according to the Theorem, which iden-
tifies this BES.

It is conjectured by Audenaert et al. that the optimiza-
tion method for concurrence is a necessary and sufficient
for separability when one considers all possible complex
linear combination of the concurrence-vectors [5]. Our
numerical verification suggests a disproval for this con-
jecture, because of the failure to identify entanglement by
applying their optimization method for the above two UPB
states. Thus the direct estimation method for concurrence
in [5] may not be able to detect all entangled states through
numerical optimizations. Here our Theorem complements
other existing approaches to make a quite good estimate of
entanglement for BES.

Example 3:Horodecki’s 3 X 3 entangled state.

A mixed two qutrits is introduced in [25]:

5—a

2, + o
a’a=§|‘lf WP |+70'+ o_, (11)
where
o= %(IO>|1><0|<1| + [ DI2XTI2| + [2)[0)2[(0]),
o= %(|1>|0><1|<0| + (2121 + [0)[2)€01¢2]),
o L
[w™) \/§(|0>|0> + [DID + 12)[2)). (12)

In [25] Horodecki et al. demonstrate that the states Eq. (11)
admit a simple characterization with respect to the parame-
ter 2 = a = 5: separable for 2 = a = 3; bound entangled
for 3 < a = 4; free entangled for 4 < o = 5. It is com-
puted by using the realignment criterion in [6] that
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IR(o )|l = (19 + 24/3a®> — 15a + 19/21 and one can
recognize all the entangled states for 3 < a = 5. One
can obtain further that ||[c%|| =1 for 2 < a <4 and
ol = 2 + V4a? —20a + 41/7 for 4<a=5.
Therefore one has C(o,)=1/V3[IR(c)|—1]=
2/3(\3a2—15a+19—1)/63 due to the observation

that ||R(c,)|l is always greater than |lo&'|| in the en-

tangled region 3 < @ = 5.

However, the concurrence optimization procedure pro-
posed in [13] can only identify the entangled states for
3.52 = a« =5 [13]. This suggests that Mintert et al.’s
methods may not be necessary and sufficient for detecting
entanglement. A rough comparison with the result of [13]
shows that our lower bound is much better than their
optimized bound in the entangled region of 3 <a =<
4.75, though a little bit weaker than theirs in the region
475 = a = 5.

We remark that, like any other known approaches, there
are also some drawbacks for our estimation. Our lower
bound cannot detect all the entangled states due to limita-
tion of the PPT criterion and the realignment criterion. For
example, it can neither recognize the 2 X 4 Horodecki BES
[26], which instead can be detected by the methods of [13],
nor give the exact value of concurrence for 2 qubits known
from [4,13].

In summary, we have provided an entirely analytical
formula for a lower bound of concurrence, by making a
novel connection with the known strong separability crite-
ria. The bound leads to actual values of concurrence for
some special class of quantum states. One only needs to
calculate the trace norm of certain matrices, which avoids a
complicated optimization procedure over a large number
of free parameters in numerical approaches. The formula
also permits us to furnish lower bounds of EOF for arbi-
trary bipartite quantum state. This complements the nice
result of Wootters for 2 qubits, as well as a number of
existing optimization methods for concurrence. Profiting
from the strong realignment criterion, our bound can give
easy entanglement evaluation for many BES, which fail to
be recognized by the regular optimization methods. This
shows that our method can serve as a powerful tool for
investigating both static and dynamical entanglement prop-
erties in realistic quantum computing devices. Possible
applications for the method could be indicating a possible
quantum phase transition for a condensed matter system,
and analyzing finite size or scaling behavior of entangle-
ment in various interacting quantum many-body systems.
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