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In this Letter, the problem of finding optimal success probabilities of linear optics quantum gates is
linked to the theory of convex optimization. It is shown that by exploiting this link, upper bounds for the
success probability of networks realizing single-mode gates can be derived, which hold in generality for
postselected networks of arbitrary size, any number of auxiliary modes, and arbitrary photon numbers. As
a corollary, the previously formulated conjecture is proven that the optimal success probability of a
nonlinear sign shift without feedforward is 1=4, a gate playing the central role in the scheme of Knill-
Laflamme-Milburn for quantum computation. The concept of Lagrange duality is shown to be applicable
to provide rigorous proofs for such bounds, although the original problem is a difficult nonconvex problem
in infinitely many objective variables. The versatility of this approach is demonstrated.
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Optical implementations of quantum information pro-
cessing devices offer many advantages over implementa-
tions employing other physical systems. Photons are
relatively prone to decoherence, and precise state control
is possible with the help of linear optical elements.
Moreover, although the required nonlinearities to do uni-
versal quantum computation are presently not available at
the single-photon level, they can be effectively realized by
means of measurements. This comes at the price of the
scheme becoming probabilistic. It was one of the key in-
sights in the field, proposed by Knill, Laflamme, and
Milburn (KLM) [1], that quantum computation can be
achieved in a near-deterministic way using only single-
photon sources, linear optical elements, and photon coun-
ters [1–3]. For this to be possible, a significant overhead in
resources is required [1,4]. At the basis of the construction
of the original scheme, yet, is a gate that is implemented
with some probability of success, the nonlinear sign shift
(NSS) gate [1,2,5]. The best known success probability of
this gate using static linear optics followed by postselection
is one quarter; this can then be uplifted to close to unity
using teleportation steps.

One of the central questions seems to be, therefore, how
well can the elementary gates be performed with static
linear optics networks? In particular, what are the upper
bounds for success probabilities of energy-preserving gates
of single modes? This seems a key question for two rea-
sons: on the one hand, the success probability at the level of
elementary gates is a quantity that determines the neces-
sary and notably large overhead to achieve near-
deterministic scalable quantum computation [1,6]. On the
other hand, for small-scale applications such as quantum
repeaters for the long-range distribution of entanglement,
high fidelity of the quantum gates may often be the de-
manding requirement of salient interest. The achievable
rates in entanglement distillation, say, may be of secondary
importance compared to the very functioning of the
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scheme. In such contexts, one could be well advised to
abandon some of the feedforward using quantum memo-
ries or delay lines, but rather postselect the outcomes.

The best known scheme to realize the NSS gate with
postselected linear optics succeeds with a probability of a
quarter. Later Knill showed that the success probability can
at most reach one half [2]. This was an important step: it
was not clear, yet, whether this bound was indeed tight.
Aiming at tightening this bound, Scheel and Lütkenhaus
made a further significant step, emphasizing that a network
realizing a quantum gate can be thought of as one which is
linked once to the input mode by a single beam splitter [7],
based on a result by Reck and co-workers [8–10]. It was
conjectured, based on a numerical analysis in a restricted
setting, that the maximal success probability of this gate
could be one quarter.

It is the aim of this Letter to link the question of success
probabilities to the theory of convex optimization [11,12].
It turns out that convex optimization provides powerful
analytical methods to prove the validity of bounds to
optimal success probabilities, without having to resort to
restrictions of generality. By doing that, we arrive at rig-
orous tight upper bounds for quantum gates in the frame-
work of linear optics quantum computation with no
feedforward on the level of elementary gates. In particular,
it is proven that the NSS gate can, in fact, be optimally
realized with a success probability of exactly 1=4.
Nonlinear phase gates and equivalents in higher Fock
layers are also considered. These methods will turn out
to provide helpful tools, although the original problem has
infinite dimension and is nonconvex. The central difficulty
here in the problem is that one cannot bound the size of the
auxiliary network a priori: It may well be that large net-
works go in hand with a significant advantage [13].

Let us start by stating the considered setting: we aim at
formulating a general recipe to find upper bounds for
success probabilities of gates of single modes preserving
2-1  2005 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.95.040502


PRL 95, 040502 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
22 JULY 2005
the energy using (i) photon sources, (ii) photon counters
followed by postselection, and (iii) static linear optical
networks of any size, using an arbitrary number of auxil-
iary modes and photons and an arbitrary number of net-
work elements, but without feedforward on the level of
individual gates (in which case the unit probability as tight
upper bound is already known from the KLM scheme [1]).
We consider gates of the form

j ini � y0j0i � y1j1i � � � � � yNjNi � Uj i

� y0j0i � y1e
i�1 j1i � � � � � yNe

i�N jNi; (1)

where jni denote the state vectors of number states and
�1; . . . ; �N 2 R. To set the phase �0 � 0 merely corre-
sponds to a change of the global phase and does not restrict
generality. This includes the NSS gate, acting as

j ini � y0j0i � y1j1i � y2j2i � y0j0i � y1j1i � y2j2i:

In a static linear optical realization of the quantum gates,
the gate can be realized only with a nonunity success
probability. Any network consisting of linear optical ele-
ments can be decomposed into three steps, as has been
pointed out in Ref. [7] based on Ref. [8]: (i) A preparation
of a distinguished auxiliary mode 2 and all (unboundedly
many) other auxiliary modes jointly labeled 3 in some
initial pure state. (ii) A unitary operation of the input on
1 and 2, reflecting an application of a central beam splitter
with transmittivity t 2 ��1; 1	 (a convenient convention)
and phase ’ 2 �0; 2�
. (iii) A measurement of all modes
labeled 2 and 3, associated with a state vector j�i. As a
consequence, any optimal static linear optical network of a
single input mode is reflected as a map pmaxU�inUy �

h�jV1;2 � 13
�in � j!ih!j
Vy
1;2 � 13
j�i, for all input

states �in � j inih inj of the input mode labeled with 1,
V1;2 is the unitary of the central beam splitter characterized
by a real transmittivity t and phase ’. Writing j!i �
�n
k�0xk�1jki � j!ki with real numbers x1; . . . ; xn�1, we

require that �n
k�0xk�1f

j

k "k�1 � p1=2ei�j for all j �

0; . . . ; N, with "k�1 � h�jkij!ki and fj
k �

hjjhkjV1;2jjijki � ei’jgj
k , where the real gj
k , introduced
for the convenience of notation, depend on t 2 ��1; 1	.

The problem now is essentially to find the optimal trans-
mittivity t 2 ��1; 1	, phase ’ 2 �0; 2�
, state vectors j�i
and j!0i; . . . ; j!ni for the optimal n 2 N, and the optimal
x1; . . . ; xn�1 in order to bound the optimal success proba-
bility. This is as such a very involved problem: The number
n cannot be bounded from above, meaning we cannot
a priori bound the required resources in the network.
This makes it formally an infinite-dimensional problem.
The function we consider is not convex, so we are expected
to encounter infinitely many local maxima. So even nu-
merically, without truncating the problem cannot be solved
as such. In order to circumvene these difficulties, two
central ideas are employed: We treat part of the objective
variables as parameters in the problem, such that the
04050
remaining problem can be relaxed to a convex quadratic
program. In this way we can exploit methods from convex
optimization. For the resulting problem we make use of the
ideas of Lagrange duality [12] and outer approximations,
and are able to explicitly construct a family of solutions to
the dual. Let us first clearly state the strategy.

(I) We consider the problem for each t 2 ��1; 1	, ’ 2
�0; 2�
, each n 2 N, and all legitimate "1; . . . ; "n�1 as
defined above. This choice is denoted as
t; ’; n; "1; . . . ; "n�1
. (II) We formulate the remaining
problem as a quadratic optimization program, which can
be relaxed to a semidefinite program [12] in x1; . . . ; xn�1.
(III) Then, we are in the position to establish the dual
problem. (IV) A family of explicit constructions of solu-
tions of the dual is presented. (V) These solutions can be
simplified such that the dependence on the specific choice
of "1; . . . ; "n�1 and ’ and t can be eliminated. This is done
by exploiting two key ideas: on the one hand, by using both
families of solutions of the dual problem, dependent on
"1; . . . ; "n�1 and ’, and, on the other hand, by appropriate
convex outer approximations. These powerful methods
allow us to identify rigorous general upper bounds for all
numbers of auxiliary modes, even though the original
problem is unbounded in size. In a sense, we approach
the optimal solution ‘‘from the other side.’’

(I) The first simplification is that we may choose any
"1; . . . ; "n�1 for some n satisfying �n�1

k�1�
2
k � �2

k
 � 1,
denoting with �k; �k 2 R the real and imaginary parts of
"k, "k � �k � i�k. We introduce eij’��j
 � �j
 � i� j


with �j
, � j
 2 R. Success of the gate requires
that

Pn�1
k�1 xk�k�

j
 � �k� j

g
j

k�1 �

Pn�1
k�1 xk�k�

l
 �

�k�
l

gl
k�1,

Pn�1
k�1 xk�k�

j
 � �k�
j

gj
k�1 � 0, for j; l �

0; . . . ; n. This is already a major simplification: instead of
maximizing the actual trace of the state, we set the imagi-
nary part to zero and avoid a very involved additional
quadratic constraint at this point, without losing generality.
The square of the quantities of the first line in the previous
equation is then the success probability.

(II) We optimize for all t; ’; n; "1; . . . ; "n�1
 over all
weights x1; . . . ; xn�1 satisfying �n�1

k�1x
2
k � xTx � 1. This

freedom corresponds to the weights in the preparation of
the initial state of the auxiliary modes. The fact that we
cannot restrict the size of the linear optics network is here
reflected by the fact that we optimize over all possible
preparations, even over all n. In this form, however, we
see that the problem is manageable. The constraint xTx �
1 can be relaxed to the convex one xTx � 1, so to

1 xT

x 1n�1;n�1

" #
� 0:

So, in general, the problem of assessing a bound for the
optimal success probability can be reduced to the following
maximization problem in the vector x � x1; . . . ; xn�1
.
This maximization problem (but not the full problem) is
found to be manifestly of the form of a so-called semi-
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definite optimization problem [12]. After a number of
elementary steps, the maximization problem in this vector
can be cast into the following form of a maximization
problem in the real symmetric matrix Z 2 Rn�3
�n�3
:

maximize � tr�F0Z	;

subject to tr�ea;aZ	 � 1; a� 1; . . . ; n� 3;

tr�ea;b� eb;a
Z	 � 0; a;b� 3; . . . ; n� 3; a� b;

tr�e1;aZ	 � tr�ea;1Z	 � 0; a� 2; . . . ; n� 3;

tr�FjZ	 � 0; j� 1; . . . ;2N� 2; Z� 0:

The square of the solution is an upper bound for the success
probability. Here, F0 � diag1; 0; . . . ; 0
. The matrices

Fj�01;1�
0 cj
�c0

T

cj
 �c0
 0n�1;n�1

" #
; j�1; . . . ;N;

Fj�N�1�01;1�
0 dj

T

dj
 0n�1;n�1

" #
; j�0; . . . ;N;

correspond to the ones that ensure the proper realization of
the gate on the level of the real part and the complex part,
respectively. The matrix

F2N�2 � 11;1 �
0 �c0

T=2

�c0
=2 0n�1;n�1

" #

finally links the constraints in the primal problem. Here,
the abbreviations cj
 � ��0�

j
 ��0�
j

gj
0 ; . . . ;�n�

j
 �

�n�
j

gj
n � and dj
 � ��0�

j
 ��0�
j

gj
0 ; . . . ;�n�

j
 �

�n� j

g
j

n � are used for j � 0; . . . ; N. The matrix ea;b 2

Rn�3
�n�3
 denotes the matrix all entries of which are
zero, except an entry 1 at a; b
. The latter matrix F2N�2

can be replaced by

G � 11;1 �
0 �'c0
=2

�'c0

T=2 0n�1;n�1

" #

with ' 2 �1;1
 to be fixed later, such that pmax corre-
sponds to the square of the optimal objective value for ' �
1, and is smaller for ' > 1. This seemingly irrelevant
modification will turn out to be a helpful idea later on, to
eliminate the dependence on the phase ’.

(III) We can now formulate the dual problem to this
optimization problem delivering the bounds, as a solution
can explicitly be constructed [14]. It can be shown that the
dual problem can be written as follows, which is now a
minimization problem in the objective vectors z 2 Rn�2,
v 2 R2N , and the matrix V 2 Rn�3
�n�3
,

minimize qTz;

subject to F0 � diag0; z1; . . . ; zn�2
 �
X2N�1

a�1

vaFa

� V � v2N�2G � 0;

where q � 1; . . . ; 1
, and matrix V has to be of the form
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V � 02;2 �W, with W 2 Rn�1
�n�1
 being a real sym-
metric matrix satisfyingWa;a � 0 for all a � 1; . . . ; n� 1.
In general, every solution of a dual problem to a semi-
definite problem gives a bound to the optimal solution to
the primal problem, as is not difficult to see [15]. Once we
are able to construct a solution z of the dual for all values of
t; ’; n; "1; . . . ; "n�1
, we arrive at a rigorous upper bound
for the primal problem. As such, pmax � qTz
2='2 gives
an upper general bound of the desired success probability.

(IV) We now explicitly construct a family of solutions,
dependent on a single number - 2 R. The presented solu-
tions may look like unlikely objects, yet they deliver the
desired bounds. In order to construct a family of solutions,
one has to find appropriate values for a matrix of arbitrary
dimensions. This structure of the problem we encounter
here is not only specific for the optimization problem at
hand, but expected to be a generic feature in problems
related to linear optics: roughly speaking, the intertwined
quadratic problems originate from the auxiliary systems,
whereas the polynomial constraints of high order are from
the distinguished passive optical element.

In the construction, to start with, we choose v2N�2 � 1.
For convenience let w 2 Rn�1 be defined as w��'=2�PN
j�1vj
c

0
 �
PN
j�1vjc

j
�
PN
j�0vN�j�1dj
. We are free

to choose vj � � cosj’
sj and vN�j�1 � sinj’
sj, j �
1; . . . ; N, with functions sj: ��1; 1	 ! R� yet to be speci-
fied. This freedom will later give rise to the outer approxi-
mation. Then, let us set ' � 2�N

j�1sj�1� cos’j
	 � 1.
This means that ' � 1, which is used to eliminate the
unwanted dependence of ’. That is, wk=�k � �1=2�PN
j�1 sj
g

0

k �

PN
j�1 cos�j
sjg

j

k . The matrix W 2

Rn�1
�n�1
 is taken to be of the formWa;b � wawb if b �

a and Wa;b � 0 if b � a. This construction yields a posi-
tive V. Finally, we choose za��2

a�1- for a � 2; . . . ; n� 2
and z1�-. With this choice, indeed, F0�
diag0;z1; . . . ;zn�2
��2N

a�1vaFa�V�v2N�2G�0 holds,
so it is, in fact, a solution of the dual [15]. This choice,
indeed, turns out to give the bounds.

(V) If we can now find functions s1; . . . ; sN: ��1; 1	 !
R� such that there is a - 2 �0; 1	 with jwk=�kj � - for all
k � 0; . . . ; n, we can, in fact, eliminate the dependence on
�1; . . . ; �n�1 and t, as we have then an outer approxima-
tion of the feasible set. The outer approximation defined by
jwk=�kj � - takes care of the polynomial constraints in
t 2 �0; 1	 of arbitrary order.

We have then, indeed, established an upper bound: The
above constructed solution yields pmax � qTz
2='2 �
qTz
2 � -��n�1

i�0 �
2
i -


2 � 4-2, so pmax � 4-2 is a rig-
orous upper bound for the success probability. So finding
an upper bound for the success probability amounts to
finding solutions, possibly dependent on t 2 ��1; 1	, for
s1; . . . ; sN such that jwk=�kj � - is satisfied. This provides
a general method that can be applied to all of the above
considered gates. It is important to note that, although we
had the freedom to construct this particular solution with-
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out caring whether this solution is unique or even optimal,
this implies a rigorous bound for the primal problem and
for the optimal success probability. This gives rise to a
recipe for finding bounds for success probabilities for all
the above quantum gates using linear optics.

The example of the NSS is, on the one hand, instructive
to exemplify the general strategy, and, on the other hand,
already the practically most important case. Here we have
that N � 2 and �0 � 1, �1 � 1, and �2 � �. For this
case of N � 2, one finds g0
k � tk, g1
k � tk�1�t2 � k1�
t2
�, and g2
k � tk�2�t4 � 2kt21� t2
 � 1� t2
2kk�
1
=2� using standard expressions for the unitaries of
beam splitters in the number state basis. We now show
that for each t 2 ��1; 1	 we can find s1; s2: ��1; 1	 ! R�

such that jwk=�kj � - is satisfied. More specifically, for
all t 2 ��1; 1	 we find s1; s2 such that �1=4 � �1=2�
s1 � s2
g

0

k � s1g

1

k � s2g

2

k � 1=4 for all k � 0; . . . ;1,

so we have that - � 1=4. Such a choice is given by

s1; s2
 �
1

4

8><
>:
�1=1� t
; 0�; if t 2 ��1; 1�

			
2

p

;

�0; 1=1� t2
�; if t 2 �1�
			
2

p
; 0
;

1; 1=2
; if t 2 �0; 1
;
(2)

for all k � 0; . . . ;1. This can be shown with elementary
methods, on the basis of only the functions in Eq. (2) such
that jwk=�kj � - holds for - � 1=4 for all k. This finally
demonstrates that the optimal success probability of a
linear optical implementation of the NSS gate without
feedforward is indeed 1=4: there are known schemes that
fulfill this bound. This settles the question of the optimal
success probability of this key quantum gate in this setting.
This statement is interestingly completely independent of
the network size, as long as it includes at least two auxil-
iary modes. The surprising result is that more resources do
not help at all, and the smallest known functioning scheme
can already be proven to be optimal. This unexpected
outcome may also be taken as a further motivation to
investigate cluster or graph state based approached, or to
slightly leave the setting of linear optics [16].

The presented method can immediately be applied to
assess optimal success probabilities of other quantum gates
within the paradigm of linear optics [17]. The key point is
that this method allows one to argue without having to
restrict the amount of resources or the size of the specific
network realizing a scheme. Statements on the distinguish-
ability using auxiliary systems [18] are also accessible. As
such, these ideas are hoped to be useful to contribute to
finding linear optical schemes that make use of the mini-
mal resources and to bringing linear optics quantum com-
putation closer to feasibility.
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