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Atomic Quantum Simulator for Lattice Gauge Theories and Ring Exchange Models
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We present the design of a ring exchange interaction in cold atomic gases subjected to an optical lattice
using well-understood tools for manipulating and controlling such gases. The strength of this interaction
can be tuned independently and describes the correlated hopping of two bosons. We discuss a setup where
this coupling term may allow for the realization and observation of exotic quantum phases, including a
deconfined insulator described by the Coulomb phase of a three-dimensional U(1) lattice gauge theory.
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Loading cold atomic gases into optical lattices allows
for the realization of bosonic and fermionic Hubbard mod-
els, and offers the possibility for the experimental study of
strongly correlated systems within a highly tunable envi-
ronment. Starting from the prediction of a superfluid to
Mott-insulator phase transition in bosonic atomic gases [1]
and the subsequent observation of the Mott insulating
phase [2—4], many new tools for manipulating and con-
trolling quantum gases have been developed [5]. In this
Letter, we combine these tools in order to drive the atomic
gas with an additional ring exchange interaction. We iden-
tify a promising system where this coupling may allow for
the realization and observation of an exotic quantum insu-
lator [6,7] described by the Coulomb phase of a three-
dimensional U(1) lattice gauge theory [8]; in quantum
magnetism this phase is known as a U(1) spin liquid.

Recently, studies of boson models with large ring ex-
change have yielded significant progress in the search for
microscopic Hamiltonians exhibiting exotic phases [9—
11]. This search has been the focus of much effort in
two-dimensional systems due to potential relevance for
high-T, cuprates. Some ring exchange models exhibit a
local conservation law and can be mapped onto lattice
gauge theories and often also quantum dimer models
(QDM) [12]. A number of such models in two and three
dimensions have been shown to possess deconfined insu-
lating ground states [13]. Many of the three-dimensional
models, including those of Refs. [6,7], were shown to
possess a U(1) deconfined phase, which supports gapped
half-boson excitations, gapped ‘“magnetic monopole” to-
pological defects, and a linearly dispersing photon mode
with two polarizations. The low-energy theory is standard
quantum electrodynamics with massive electrically and
magnetically charged scalar particles. Models of bosons
on the square lattice with large ring exchange are in a
different class from those above, and also exhibit interest-
ing physics. Such models can support an “‘exciton Bose
liquid” phase, a two-dimensional analog of a Luttinger
liquid [14], as well as nontrivial valence-bond solid (VBS)
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insulating states [15]. Such states can undergo a direct
quantum phase transition to the superfluid [16].

Despite much recent theoretical progress, clear experi-
mental evidence for the existence of exotic phases is still
missing. Furthermore, relatively few theoretical techniques
exist to study such strongly correlated systems; perhaps the
most powerful to date is quantum Monte Carlo simulation,
but the class of models that can be productively studied is
severely limited by the notorious sign problem. Atomic
gases offer an alternative approach through the design of
quantum simulators, where a microscopic Hamiltonian is
implemented in a quantum gas and its phase diagram is
studied experimentally via controlling the strength of the
interaction terms.

In this Letter, we present the design of a ring exchange
interaction for bosonic gases subjected to an optical lattice.
Such an atomic lattice gas is well described by the Bose-
Hubbard model [1]

U
How = — } t _§ Thtp.p.
e J(ij>bi b 24 bibibib .

where U denotes the on-site repulsion and J is the hopping
energy with (i, j) denoting summation over nearest-
neighbor sites. The additional ring exchange interaction
involves four lattice sites forming a square plaquette, and is
driven by a resonant coupling of the bosons via a Raman
transition to a ‘“‘molecular” two-particle state [5]; see
Fig. 1. This state is subjected to an independent optical
lattice with its lattice sites at the plaquette centers. The
symmetry of the molecular state strongly influences the
coupling; we are interested in a d-wave symmetry of the
molecule, which can be carried either by the relative
coordinate or the center of mass motion. Then, the cou-
pling to the molecular state (created by mé) takes the form

Hy = ZV’”E’"D + gZ[mE(bll% —by,b,)+He] (2
O O
The summation runs over all plaquettes []. The single-
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FIG. 1. (a) Two-dimensional setup: the bosons (black dots) are

on the square lattice with the molecules (gray dots) in the center
of each plaquette. (b) Three-dimensional setup: the bosons
(black dots) are on the links of the cubic lattice. Within each
face there are four bosonic sites, which establish a plaquette
(dashed square). The molecules (gray dots) are in the center of
each plaquette.

particle states created by b;r are called bosonic or atomic
states to distinguish them from the molecular two-particle
states. Depending on the setup, the atomic states reside
either in the corners or on the edges of each plaquette (see
Fig. 1), and are numbered counterclockwise. The energy v
corresponds to the detuning from resonance, while g is the
coupling strength determined by the Rabi frequency of the
Raman transition. While the Hamiltonian (2) is interesting
in its own right, the connection to ring exchange is appar-
ent upon integrating out the molecular field perturbatively
in g/v, which leads to the effective Hamiltonian

HREZKZ(bszb;b4+b1b;b3bI —ninjy —n2n4), (3)
O

with K = g?/v. Note that the structure of the coupling in
Eq. (2) also produces a next-nearest-neighbor interaction.
The bosonic system turns metastable for large negative
detuning. However, the decay time easily exceeds typical
experimental time scales of atomic gases. Then, the per-
turbative expansion is again valid and allows for the real-
ization of a system with negative ring exchange
interaction.

In the following, we present the microscopic design of
the ring exchange interaction within atomic gases. This
design combines standard tools for manipulating and con-
trolling cold atomic gases [5,17]. Our starting point is a
system of bosonic atoms with two internal states coupled
via a Raman transition. These different internal states can
be trapped by independent optical lattices; such indepen-
dent trapping has been realized recently using spin-
dependent optical lattices [18,19]. An alternative approach
is the trapping of alkaline earth metals, e.g., 38Sr, where the
first excited state 3P, exhibits a long lifetime with a differ-
ent polarizability than the lowest energy state 'S, [20]. We
introduce the notation ¢,(x) and i (x) for the field opera-
tors describing the two internal states, and the microscopic
Hamiltonians then take the form (o = a, b)

_ i (—HV? 8a t 14
Ha_/dx|:¢a< m +Va+ea){ﬁa+7¢a¢a¢awaj|’
with g, = 4mh*a,/m the interaction strength for scatter-
ing lengths a,. The interaction strengths between the
atoms can be tuned independently by using magnetic or
optical Feshbach resonances [5]. The e, are the homoge-
neous energy shifts between the internal states. The poten-
tial V,(x) accounts for an optical lattice driven by lasers
with wave vector k = 277/ A, with the strength v, in units
of the recoil energy E, = h*k?/2m. The two internal states
are coupled via a Raman transition. Transforming away the
optical frequencies within a rotating frame, the coupling
takes the form

Hy = 1) ] dx[yt v, + vl ) @)

with ) the Rabi frequency of the transition.

We focus first on the two-dimensional setup shown in
Fig. 1(a). Confinement to two dimensions is achieved by a
strong transverse optical lattice, which quenches hopping
between different planes. The remaining optical lattice
provides the square lattice structure for the atomic state
Y, and takes the form V,/E, = vy[cos’(kx/2) +
cos?(ky/2)]. For v, =1, the mapping to the Bose-
Hubbard model is well justified. The optical lattice for
the second internal state ¢,, which is localized at the
plaquette centers, takes the form

Va

£ Alcoskx — cosky]? + sin?(kx/2) + sin?(ky/2)}.

The first term is obtained by interference between standing
laser waves along the x and y directions, while the other
terms represent a standard square lattice. The different
lattice spacing of the two contributions is easily achieved
by a finite angle 277/3 between the interfering beams. We
are interested in a strong optical lattice V,, where tunneling
between different wells is quenched, and focus on the
energy states within a single well. Then the structure of

(a) (b) \
e /E. [S¥1 DA eV Lty

€ tepf Unz
30 A B

e+ €1+ Un

(agar)

(doaz)
20 ] st A (doar)
i FPN :(J) _____ 1/0 :2
10 (aods) (aodr)
(=0 A4 Q “
0 SO

FIG. 2. (a) Single-particle energies €, of the states aZD|O> for
v, = 30. (b) Energy levels of the two-particle states with sym-
metry B, and E. The frequency w = (€) + €, + Uy, + v)/2h of
the Raman transition is chosen near resonance with the molecu-
lar state ag ag |0) and far detuned to the single-particle excita-
tions.
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V, produces strong shifts of the energy states compared to
those obtained within a harmonic approximation. The
states are characterized by the irreducible representations
of the symmetry group C,, (i.e., the point group of the
square lattice); the low-energy states and corresponding
representations derived within a band structure calculation
are shown in Fig. 2 for v, = 30. The state with energy €, in
each plaquette [ is created by the bosonic operator a;
with [ = 0, =1, 2. Of particular interest is the state |ay )
corresponding to the representation B,, which transforms
under Cy, like the polynomial xy (i.e., d,, symmetry). In
contrast to the harmonic approximation, this state is
nondegenerate.

For weak interactions, the Hamiltonian for the bosonic
field ¢, reduces to

_ f Uir 1t
H,= > viajpan + > —=ajnanaparn, ()
[Am] L0

with U;y < €; the interaction energy and v; = €; — how
the energies of the excitations within the rotating frame (w
is the frequency of the Raman transition). The coupling
driven by the Raman transition takes the form Hi =
hQE;YD[w,adeLD + H.c.], with Q the Rabi frequency.
Because of the square symmetry, each operator a; cou-
ples to a special structure of surrounding bosons. The
operators for which the coupling becomes diagonal trans-
form irreducibly under C,,, and are dy ~ by + by + b3 +
by, doyo~ by £iby — by ¥ iby, and dyg~b; — by +
b3y — bs. The wave function overlaps w; derive from the
shape of the localized wave functions. For typical parame-
ters (v, = 6 and v, = 30) we obtain w; = 0.1.

We are interested in a setup with molecular two-particle
states |mo) = mb|0) = a;r,Dag’Dm} (with d,, symmetry
B,) resonantly coupled to the bosonic states b b;f |0) with
detuning ». The energy of this state is €y = €y + €, +
Uy,. As the formation of the molecule involves the virtual
creation of a single-particle excitation aZD|O>, the fre-
quency of the Raman transition is determined by w =
(em + v)/2h (Fig. 2). We require that the single-particle
excitations a; 5|0} are far detuned (i.e., w282 <|/]), and
only the molecular states are resonantly coupled with
|v| << |v)|. As the separation between the energy levels
€, is large ( ~ 2\/v—aEr), this condition can easily be sat-
isfied for suitable interaction energy Ug,. Furthermore, it
may be of interest to tune the interaction energy via a
Feshbach resonance to an optimal value. For such strong
interactions the molecular operator becomes mg =
cla&Da;D + cz(aI’DaID + ailﬂailﬂ) + .-+,  where
the ellipsis denotes admixture of higher energy states
respecting the d,, symmetry. The parameters c;, and the
energy €y have to be determined from the solution of the
two-particle problem within a single well.

Integrating out the single-particle states |/, (J) = aZDIO>
perturbatively in #h{/v;, we obtain the effective

Hamiltonian Hy;; see Eq. (2). The last term in Eq. (2)
accounts for the coupling between molecules |mp) and
the atomic states |b;). The operator b b; — byb, is the
only second-order polynomial in b; transforming in the
same representation B, as the d-wave molecule |m). The
coupling g is

g= —7’1292[Clw0w2<i + i) + cow? i} (6)
o 1 vy

which reduces to g ~ 47*Q%Uy,/(€, — €;)* for weak in-
teractions Ujy, < €). We have dropped terms ~b? as we
assume that double occupation of the bosonic sites is
strongly suppressed by the on-site repulsion U. In addition
to the Hamiltonian in Eq. (2), we obtain a laser induced
hOpplIlg term EI,DJleDdl,D with J[ = _hQQzlwllz/V].
The sign of this laser induced hopping depends on the
detuning. In principle it is possible to cancel these terms
via interference by an additional far-detuned Raman tran-
sition. Furthermore, we have absorbed a shift in the energy
of the molecular energy into a redefinition of w. Tuning the
Rabi frequency () sets the energy scale of the coupling g,
while the detuning » is controlled by the frequency w of
the Raman transition; this allows the system to be tuned
through a resonance.

The zero temperature phase diagram of the two-
dimensional setup shown in Fig. 1(a) with the
Hamiltonian H = Hgy + Hy; has not yet been studied.
However, by considering appropriate limits we suggest
there is potential for interesting physics in the intervening
regime. We let g be the average number of atoms per unit
cell (i.e., molecular states counted twice) and consider the
filling ¢ = 1/2. For large positive detuning » > g with
J > g?/v, the system reduces to the conventional Bose-
Hubbard model, see Eq. (1), and the bosons establish a
superfluid phase due to the incommensurate filling. In the
opposite limit of large negative detuning (|v| > J, g and
v < 0), all bosons are paired into molecules, and we can
think in terms of an effective molecular Bose-Hubbard
model at 1/4 filling. For J < g, perturbation theory in
g/|v| generates a nearest- and next-nearest-neighbor re-
pulsion between molecules Uy, ~ g*/|v3|. Furthermore, a
molecular ring exchange term is generated at the same
order. The ground state of the resulting model is not
known, but is likely to be a molecular charge density
wave with <erDmD> larger on every other row and column.
There is no difference at the level of symmetry between
this state and a “‘plaquette’” valence-bond solid (VBS) of
the atomic bosons. We therefore suggest that this system is
a candidate for a deconfined quantum critical point [16] as
the system is tuned between the VBS and the bosonic
superfluid.

The above design of a ring exchange interaction for
bosonic systems is a building block that can be applied
to different setups and lattice structures in two and three
dimensions. Of particular interest are models exhibiting a
local gauge invariance that may allow for the realization of
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deconfined insulators [6]. In the following, we present such
a three-dimensional setup that can likely access a U(1)
deconfined state.

The lattice structure of this setup is described by a cubic
lattice with the bosonic states on the links; see Fig. 1(b).
Each cubic face forms a plaquette involving four link
bosons created by the operator blfj Between these four

link bosons we drive a ring exchange interaction via plac-
ing a molecular state at the plaquette centers, i.e., in the
center of each cubic face. With this definition of the
bosonic and molecular sites, we can again derive the
Hamiltonian H = Hgy + Hy shown in Egs. (1) and (2).
The microscopic derivation of these effective Hamiltonians
follows very closely the derivation in the two-dimensional
setup: modifications appear only due to the complex lattice
structure, which requires a detailed band structure analysis
(the details of this design will be presented elsewhere [21]).
We expect that the phase diagram of this system is domi-
nated by a superfluid phase for large hopping, while in the
limit of small hopping more exotic states may result. To
better understand the possibilities, we consider the limit of
vanishing hopping J = 0. For large detuning |»| > g, the
molecules can be integrated out to obtain the cubic ring
exchange model of Ref. [6] with an additional interaction
term; see Eq. (3). (Note that a unitary transformation
allows one to change the sign of the ring exchange term.)
This model is a U(1) lattice gauge theory and, at least over
some region of the parameter space, it can enter its
Coulomb phase, i.e., a U(1) deconfined insulator [6]. It
has been shown that this state is stable to all perturbations,
including those that break the gauge invariance such as a
boson hopping J. Then, in the presence of a small but finite
hoppping J, the gauge structure goes from an explicit,
microscopic property to an emergent one present only in
the low-energy theory.

Remarkably, the three-dimensional setup shown in
Fig. 1 with the Hamiltonian H = Hpy + Hy and
quenched hopping J =0 is even a U(l) lattice gauge
theory for arbitrary g/v. This can be seen by considering
a cubic site i, letting L(7) be the 6 cubic links and P(i) the
12 plaquettes containing i. Then the local object G; =
E,»jEL(,-)b;fjbij + Sgeppmibmo s a conserved U(1)
“gauge charge.” A straightforward “‘spin wave” treatment
allows one to write down a low-energy theory of liquid
phases in ring exchange models [6,14], and we obtain here
an artificial photon mode with two polarizations. This
analysis demonstrates that this model is likely to support
a U(1) deconfined insulator, which is likely to be contin-
uously connected to the U(1) deconfined phase discussed
above and in Ref. [6] for the large-» limit. We also note
that H = Hgy + Hy; should be amenable to quantum
Monte Carlo simulation when J = 0, as a simple unitary
transformation renders all matrix elements of e~ non-
negative in the number basis.

In conclusion, we have presented an experimentally
accessible setup for the design of ring exchange interaction

on cold atomic gases. This design offers the possibility for
the atomic quantum simulation of a certain class of strong
coupling Hamiltonians and opens an alternative approach
for the study of novel and exotic phases with strong corre-
lations. In addition, we remark that the d-wave molecular
state couples to a special structure of the surrounding
bosons. It should be possible to use the coupling of this
state as a probe of this structure within phases of the atomic
system. This may provide a powerful tool for the detection
of unconventional order in strongly correlated systems.
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