PRL 95, 038303 (2005)

PHYSICAL REVIEW LETTERS

week ending
15 JULY 2005

Segmented Waves from a Spatiotemporal Transverse Wave Instability
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We observe traveling waves emitted from Turing spots in the chlorine dioxide-iodine-malonic acid
reaction. The newborn waves are continuous, but they break into segments as they propagate, and the
propagation of these segments ultimately gives rise to spatiotemporal chaos. We model the wave-breaking
process and the motion of the chaotic segments. We find stable segmented spirals as well. We attribute the
segmentation to an interaction between front rippling via a transverse instability and front symmetry
breaking by a fast-diffusing inhibitor far from the codimension-2 Hopf-Turing bifurcation, and the chaos
to a secondary instability of the periodic segmentation.
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Spiral waves and, more generally, traveling waves have
been thoroughly studied in excitable and oscillatory media.
In most of these active media, the inhibitor species diffuses
at a rate comparable to or less than the activator, or is
immobilized, and the wave fronts are continuous and sta-
ble. When waves in the Belousov-Zhabotinsky (BZ) reac-
tion lose stability, they exhibit ripples or break up due to
wave front instability [1]. Spiral breakup was also reported
in the BZ reaction due to convective instability [2]. This
form of breakup has been discussed in connection with the
mechanism of cardiac fibrillation [3]. In systems where the
inhibitor diffuses more rapidly than the activator, breakup
is associated with a negative eikonal-curvature relation
[4,5]. Spiral breakup typically leads to spiral turbulence
or chaotic waves [6], except for a recent report of stable
segmented spirals in the BZ-AOT [AOT = sodium bis(2-
ethylhexyl) sulfosuccinate] microemulsion system [7]. In
most cases of unstable waves, a faster-diffusing inhibitor
plays a key role, a phenomenon which has drawn much
attention recently. In fast inhibitor systems, fronts separat-
ing bistable steady states can show interesting behavior as
well, developing into labyrinthine patterns [8] or cellular
structures [9-11], both of which show intrinsic
wavelengths.

Here, we examine waves in the chlorine dioxide-iodine-
malonic acid (CDIMA) reaction, where the activator spe-
cies is iodide, which diffuses slowly or is immobilized, due
to the presence of a complexing agent in the gel medium.
The chlorite inhibitor, in contrast, diffuses rapidly. This
condition favors Turing instability, and it was in this sys-
tem that Turing’s idea [12] was first brought to experimen-
tal reality [13]. The coexistence between Turing patterns
and waves has been observed previously as superposed
[14] or juxtaposed [15] patterns, or as mixed turbulence
[14] near a codimension-2 Turing-Hopf bifurcation point.
Here, we report a different coexistence, far above the
codimension-2 point, where the Turing structures serve
as wave sources, and the continuous waves are unstable
and break into segments; spirals separate into segmented
spirals while preserving the striking spiral envelope. The
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segmentation does not settle down with a unique perfora-
tion length. Instead, segments keep growing, splitting,
shrinking, and vanishing in a “staggering” motion. We
simulate these behaviors with a simple reaction-diffusion
model, analyze the stability properties of this segmentation
to find the relevant transverse spatiotemporal wave front
instability, and calculate the dispersion relation.

Our experiments are carried out in a one side fed un-
stirred reactor. The working medium is an agarose gel (2%,
Fluka), which is separated from the feeding chamber by an
Anapore membrane (Whatman, pore size 0.2 xm) impreg-
nated with agarose gel (4%) to avoid stirring effects and a
cellulose nitrate membrane (Whatman, pore size 0.45 mm)
for contrast. Three solutions are fed into the reactor, one
containing I, (Aldrich), another ClO,, and the third ma-
lonic acid (MA, Aldrich) and poly (vinyl alcohol) (PVA,
Aldrich, 80% hydrolyzed, average mol. wt. 9000—10 000),
all prepared in a 10 mM solution of sulfuric acid [16].

Figures 1(a)-1(c) show a sequence of snapshots of
segmented waves emitted from Turing spots or outwardly
propagating spirals. Initially the system shows continuous
waves that move rapidly, but as the concentration of PVA

FIG. 1. Segmented waves in the CDIMA reaction (a),(b),(c).
Frame (b) taken 50 s after frame (a), and frame (c) taken 115 s
after (b). The spot pointed to by the arrow in (a) disappears
in (b), while the arrow in (c) signals the segmentation of a wave.
Frame size 15X 15mm? [L], =0.36 mM, [MA], =
1.85 mM, [Cl0,]y = 0.14 mM, [poly(vinyl-alcohol)] =
0.85 g/L. Temperature inside the reactor is 4 °C; residence
time is 220 s. Segmented waves represent a transient from
traveling waves to Turing patterns. (d) Snapshot from a 2D
simulation, size 128 X 128 s.u., showing segmented waves gen-
erated from Turing spots (see [24] for a movie).
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inside the gel rises, Turing patterns appear at the bounda-
ries, and the waves begin to segment. Propagating wave
segments exhibit a preferred length, as breaking and van-
ishing occur frequently. Eventually, the Turing pattern
dominates the entire system. Slightly lowering the PVA
concentration (to 0.8 g/L) leads to a mixture of waves and
Turing patterns that can last for more than 50 h without any
domain expanding. For even lower concentrations of PVA,
the waves expand, and the Turing patterns disappear.

The Lengyel-Epstein model [17] reproduces Turing pat-
terns in the CDIMA reaction nearly quantitatively [18]. It
also yields phase waves and bulk oscillations after a Hopf
bifurcation, but it does not support trigger waves, because
the model does not display excitability. For a phenomeno-
logical description of segmented waves, we therefore
choose the well-known Brusselator model [19]:
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We focus on the fast inhibitor case with diffusion coeffi-
cient ratio 6 = D,/D,, < 1. The system has Turing and
Hopf bifurcations located at b7 = (1 + a+/8)?, and bl =
1 + a?, respectively. The codimension-two Turing-Hopf

point occurs where these curves intersect: a' = %,
b™ = (I£9)2. We fix D, =5, D, = 12 s.u?/tu. (s.u. =
space units, tu. = time units), which puts the
codimension-2 point at (a, b)™ = (2.213,5.898). We
take (a, b) = (2.3, 20) for all of our simulations. This large
value of b places the system far above both the Turing and
Hopf bifurcations (b > bT, bll), i.e., far from the steady
state equilibrium, and with quite nonsinusoidal oscillations
supporting trigger waves. With these parameters, we are
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FIG. 2. Three stable solutions from 1D simulations under
periodic boundary conditions, size 128 s.u. (a) Bulk oscillation,
period T = 28.8 t.u.; (b) stationary Turing pattern, wavelength
Ar = 12.8 s.u.; (c) wave train, propagation velocity v =
8.9 s.u./tu. (d) propagation velocity vs interwave interval in
wave trains. Velocity at interval 53 is marked for the archime-
dean spiral in Fig. 4(c). (e) Amplitude of bulk oscillations
increases with b.

able to mimic all the experimental behaviors described
above. In Fig. 1(d), for example, we demonstrate the
coexistence of Turing patterns and segmented waves.

First, we seek all stable solutions in the 1D spatially
extended system. When the steady state loses stability, one
of the solutions is bulk oscillation (BO). The stability of
BO can be evaluated by calculating the Floquet multipliers
[20]. We find that the two Floquet multipliers decrease
quickly to zero as the wave number increases, which means
that BO is stable toward infinitesimal spatial perturbations.

In addition to the single homogeneous BO solution,
there are two inhomogeneous solutions: Turing patterns
and wave trains. Both are stable in the Lyapunov sense.
These three solutions are shown in Figs. 2(a)—2(c).

Because both solutions are stable, Turing patterns can
coexist with waves [Figs. 1(a)—1(c)], leading to competi-
tion. In the experiments in Fig. 1, the coexistence is a
transient in the evolution toward Turing patterns; i.e., the
Turing solution is more stable than the wave solution. With
our chosen parameters the model yields the same behavior
[Fig. 1(d)], but the situation can be reversed by a different
choice of parameters, as occurs in the experiments.
Competition between Turing patterns and bulk oscillations
near the codimension-2 Turing- Hopf point was studied
using a weakly nonlinear analysis in Ref. [21], but such
techniques fail far from this point, where excitation wave
solutions can arise.

We are more interested in the wave solution. The wave
velocity depends on the recovery of the medium and its
excitation, which are related to the interval between suc-
cessive waves. We calculate this relation in Fig. 2(d), and
find that a sparse wave train with a large interval can move
as much as five times faster than a dense wave train. Slow
waves are trigger waves, which arise after a canard
[Fig. 2(e)]; they tend to break into segments in 2D.
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FIG. 3. Formation of a segmented wave and its motion in 2D
simulations, size 128 X 43 s.u., periodic boundary conditions.
(a) Discrete snapshots show a smooth continuous traveling wave
breaking up into wave segments. (b) Space-time plot of a
continuous run from (a) in the time window =
3370-3430 t.u. showing spatiotemporal chaos in the comoving
frame at velocity v = 9.15 t.u./s.u. Marked areas show splitting
(triangle), vanishing (circle), and breathing (rectangle).
(c) Secondary instability destabilizes periodic segmented waves
into chaos. Spatiotemporal plot in the comoving frame, =
20-80 t.u. (see [24] for a movie).
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To demonstrate the wave-breaking behavior, we carry
out a 2D simulation in Fig. 3(a), where a small local
concentration perturbation is added at the middle of a
smooth continuous traveling wave. The local perturbation
grows and causes the first break at 2 t.u. The following
snapshots show the spreading of the perturbation and the
breaking of the continuous wave into segments. Here the
segmented portion of the wave moves slightly faster than
the continuous portion, resulting in the convex envelope
seen at 14 t.u., where the horizontal dash-dot line empha-
sizes that the segmented part is ahead of the continuous
part. As the segmented wave propagates, however, the
convex curvature finally disappears, as shown at 80 t.u.

The segmented wave shows a preferred wavelength
(segment length plus gap, with the gap maintaining nearly
constant length), Ay = 11.6 s.u. If a segment is longer than
Ag it may split or shrink. Shorter segments may grow, or
simply disappear. This dynamics might be expected to lead
eventually to a unique segment length. Instead, we observe
a staggering motion as shown in Fig. 3(b), which results in
spatiotemporal chaos.

To confirm that the system does not evolve to a sta-
tionary periodic front, we followed a long run up to t =
4000 t.u. in Fig. 3(b). More convincingly perhaps, we
performed another simulation where the system was ini-
tialized at the perforation wavelength. Figure 3(c) shows
that the periodic segmented wave is not stable and deteri-
orates into the staggering motion within 50 t.u., indicating
the existence of a secondary instability.

Figures 4(a)—4(c) demonstrate that a planar continuous
wave with one free end can roll up and transform into a
stable segmented spiral wave. Figure 4(d) shows super-
imposed snapshots taken over one full rotation period. The
spiral tip is a singularity, shown as a bright spot. Close to
the tip, the wave has smaller amplitude and looks darker.
Segments, seen as ripples, are sparser and shallower close
to the tip area, and increase in frequency and depth as we
move out from the center. Clearly, there is a threshold of
length, above which one segment breaks into two. We also
observe some segments vanishing during propagation. In
the presence of spatial noise, more break points are seeded,
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FIG. 4. Segmented spiral wave develops from a continuous
traveling wave with a free end subject to spatial random noise
(< 1.4%). Arrows indicate propagation directions. System size
256 X 256 s.u. (a) Initial wave (r = 0); (b) spiral begins to
develop (¢t = 10). (c) Developed segmented spiral (¢t = 30).
(d) Twenty-six superimposed snapshots in one period T =
5 t.u. The spiral tip is located at the white spot. (¢) Segmented
target pattern arising from a “dust” (u = 10, v = 8.7) (see [24]
for a movie).

so that segmentation becomes easier and spreads more
rapidly than in a noise-free system. A target pattern formed
in this way is shown in Fig. 4(e).

Why does a continuous spiral break up into segments?
Our spiral is archimedean, r = a¢ in polar coordinates,

with position-dependent curvature x given by a(12++7;22)3/2’
where a = 53/24r. Recall Fig. 3(a) where a planar wave
(zero-curvature) can break up as well, which indicates that
the profiles’ curvature is not the cause of segmentation.
Note also, that after segmentation the local curvatures of
the segments vary, but they all propagate at the same
velocity, so that the profile is preserved. This feature dis-
tinguishes our segmented spirals from spiral turbulence
[6], where propagation failure and reversal of propagation
direction (backfiring) can be found, and the segmentation
can be traced back to eikonal-curvature effects [22], which
are not relevant here.

Though the segmentation of this spiral resembles that
seen in the BZ-AOT system [7], these phenomena have
distinct mechanisms. Segmented spirals [7], as well as
“dash waves” [23], in the BZ-AOT system, are believed
to emerge from the interaction between two steady states,
“one of which is excitable, whereas another is pseudo-
Turing unstable.” Here, the system has a single steady
state, which does not show ‘‘pseudo-Turing instability”
[23]. Moreover, our segmented waves, either as a planar
envelope in Fig. 3(a) or as a rotating spiral in Fig. 4(c),
emerge from traveling waves. Therefore the analysis
should utilize the wave solution rather than the steady state
solution. Our phase wave trains (limit cycles) lie far from
the steady state and are quite nonsinusoidal, so that any
analysis based on the steady state solution is likely to fail.

Our stability analysis starts from a planar wave front
solution. We consider an infinitesimal sinusoidal perturba-
tion along the front. By inserting this solution into the
reaction-diffusion equations, and linearizing about the pla-
nar front in a comoving frame, the problem is transformed
into an inhomogeneous eigenvalue problem. The disper-
sion can be obtained numerically from the solvability
condition [9]. We calculate the dispersion by direct simu-
lations on a system of size 128 X 43 s.u. with mesh
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FIG. 5. Dispersion relation of traveling wave transverse insta-
bility for Fig. 3 (solid line). Decreasing b lowers the growth rate
and shifts to the left the most positive wave number (dashed
line), until the instability vanishes (dotted line).
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0.25 s.u. using an explicit Euler integration step 1.0 X
10~% t.u., and show the result in Fig. 5. The most unstable
mode lies at ky, = 0.53, or wavelength Ay = 12 s.u., which
agrees very well with the perforation wavelength for seg-
mentation in Figs. 3 and 4. Decreasing b decreases the
excitability, which vanishes around » = 7, and weakens
the transverse instability.

When a wave front loses stability via a transverse insta-
bility, it becomes sinusoidally modulated (rippled). This
modulation remains symmetric at small amplitude, and the
concentration along the front is constant. As the amplitude
grows, symmetry is lost, and the concentration of activator
at the valleys (lagging regions of the propagating front)
becomes lower than at the crests (leading portions) due to
annihilation from the fast-diffusing inhibitor. This concen-
tration difference creates the perception that a continuous
wave front has broken into segments. Therefore, the seg-
mentation phenomenon is a combination of geometric
curve rippling and symmetry breaking of the uniform
concentration profile along the front. If we change the
diffusivity, propagation failure can occur at the valleys,
which either produces stationary Turing spots or generates
new waves propagating in the opposite direction (back-
firing). The first case results in the formation of Turing
patterns, while the latter case gives breakup to wave seg-
ment turbulence (strong chaos).

The staggering motion remains an open question. If we
define the primary instability as the wave front instability
that gives rise to periodic segmentation, then secondary
instabilities refer to the loss of stability of the segmented
structure. We note that the unstable sideband in Fig. 5 is
quite broad, which allows a rich array of harmonic modes.
We speculate that the interaction among the most unstable
mode at k, and modes in this sideband causes the stagger-
ing motion of propagating segmented waves, resulting in
spatiotemporal chaos (soft chaos).

We have reported observations of segmented waves in
the CDIMA reaction under conditions where both Turing
patterns and wave solutions are stable and can coexist.
Waves are generated from Turing spots or from spiral
tips. They break down into segments during propagation,
initially maintaining their envelope, rather than degenerat-
ing into chaos as is often observed. Our segmentation
originates from a spatiotemporal transverse instability of
the wave solution, which causes the front first to ripple and
then to exhibit large variations in concentration along its
length. The dispersion relation analysis shows that the
most unstable mode agrees very well with the segmenta-
tion length scale. We do not fully understand why the
system does not settle at the perforation wavelength, but
instead undergoes the staggering motion that ultimately
leads to spatiotemporal chaos.
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