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Scalable Design of Tailored Soft Pulses for Coherent Control
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We present a scalable scheme to design optimized soft pulses and pulse sequences for coherent control
of interacting quantum many-body systems. The scheme is based on the cluster expansion and the time-
dependent perturbation theory implemented numerically. This approach offers a dramatic advantage in
numerical efficiency, and it is also more convenient than the commonly used Magnus expansion,
especially when dealing with higher-order terms. We illustrate the scheme by designing 2nd-order self-
refocusing 7 pulses and a 6th-order 8-pulse refocusing sequence for a chain of qubits with nearest-
neighbor couplings. We also discuss the performance of soft-pulse refocusing sequences in suppressing

decoherence due to low-frequency environment.
DOI: 10.1103/PhysRevLett.95.037202

A control of coherent evolution of quantum systems is
increasingly important in a number of research fields and
applications [1-5]. Such control has long been a staple in
nuclear magnetic resonance (NMR) spectroscopy, where a
structural analysis of complex molecules requires the ap-
plication of long sequences of precisely designed radio-
frequency (1f) pulses [6]. Recently, coherent control has
emerged as an important part of quantum information
processing (QIP), spurring numerous studies on general
properties and specific design of pulses and pulse sequen-
ces for application in NMR-based [7] and other potential
implementations [8,9] of quantum computers (QCs).

The precision required for QIP is achieved most read-
ily using shaped (also soft), typically narrow-spectrum,
pulses. When properly constructed, such pulses allow ex-
citation to be limited to a particular set of modes which
results in better control fidelity and reduced incoherent
losses (e.g., heating). The latter is especially important
for putative solid-state QC implementations which are
proposed to operate at cryogenic temperatures. Addition-
ally, as we also discuss in this work, refocusing with care-
fully designed high-order pulses and pulse sequences can
offer significantly better protection against nonresonant
decoherence sources (e.g., low-frequency phonons) as
compared to lower-order sequences.

Over some 40 years shaped pulses were utilized in
NMR, a number of schemes were suggested for their de-
sign [6]. Most (although not all) rely on the average Hamil-
tonian theory [10], a perturbative scheme based on the
cumulant (Magnus) expansion for the evolution operator.
The expansion is done around the evolution in the applied
controlling fields, while the chemical shifts (resonant-
frequency offsets) and, ideally, interspin couplings, are
treated perturbatively. The main drawback of the Magnus
expansion [Eq. (9)] for numerics is multiple integrations
appearing in higher orders; its use in calculations was
almost always limited to quadratic order. The alternative
scheme found in the literature is a simulation involving the
full or partial Hamiltonian of a quantum system [11,12].
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PACS numbers: 75.40.Gb, 75.10.Jm, 75.30.Ds, 75.40.Mg

This scheme obviously lacks scalability, as the computa-
tional difficulty grows exponentially with the system size.

We present an efficient scalable scheme to design high-
order soft pulses and soft-pulse sequences for controlling
quantum many-body systems. Instead of using Magnus
expansion or other effective Hamiltonian theories, we
rely on the time-dependent perturbation theory (TDPT)
implemented numerically. This allows an easy extension
to higher orders (up to 9th in this work), while preserving
the benefits of the cluster theorem [13] which limits the
size of the system to be analyzed. The high-order calcu-
lation allows a straightforward classification of pulse se-
quences by order K, the number of terms in the TDPT for
which the control remains perfect. We also discuss the
performance of different-K sequences in suppressing de-
coherence due to low-frequency environment.

As an illustration, we consider a quantum spin chain
with “‘always-on” nearest-neighbor (NN) interactions,
where each qubit (spin) can be individually controlled.
We construct a family of one-dimensional pulses with dif-
ferent degrees of self-refocusing with respect to the J,
coupling. The duration of a pulse, 7, is fixed to allow
parallel execution of quantum gates in different parts of
the system. To reduce the spectral width [14] of an arbi-
trary sequence of such pulses we also require a number of
derivatives of the controlling fields to vanish at the ends of
the cycle. We show that thus designed pulses work as drop-
in replacement of hard pulses, and compare their perform-
ance with that of two commonly used shapes. We illustrate
the performance of the method by doing an exhaustive
search among two-sublattice eight-pulse refocusing se-
quences to produce a sequence of order K = 6 for the
quantum Ising chain [refocusing errors scale as (J,7)°],
order K = 2 for general xxz chain, where, in addition, each
spin has an order K = 2 protection against phase decoher-
ence due to low-frequency environment (Table I).

We consider the following simplified Hamiltonian,

H(1) = Hc(1) + Hs + Hy(t) + H,, (1)

with the first (main) term due to individual control fields,
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TABLE 1. Order K determining the scaling ( = 7X) of the
gate errors with the pulse duration 7 for different refocusing
sequences. 1: a single 77 pulse along the x axis on odd sites,
“X%”; 2: two 7 pulses along the x axis, odd sites only, X%X%,
4: X3Y3X2Y3 (bars for negative pulses, subscripts denote odd or
even sites); 8: X2Y3X3Y3Y3X32Y3X3. Asterisks mark odd-site
refocusing. See text for description of the three models.

Model Ising xxz Bath
Sequence 1 2 4 8 1 2 4 8 1 2 4 8
Gauss [15] 01 1200010 1* 0 1
Herm [16], S, 1 1 40 01 1 1* 1* 1 1
0 2356 0 01 2 2% 2 2 3
1 X X y y
Hc(t) = EZ[Vn(t)an + Va(Hohl, (2)
n

where o, M = X, Y, Z, are the usual Pauli matrices for the

nth qubit (spin) of the 1D chain. The other terms describe
the interactions between the qubits (NN xxz),

1 )
Hs =7 S [ oios +IL (oot + ahel)] ()

nn
(n,n")

and the coupling with the oscillator thermal bath,
1
Hy(t) =Y ALY VE(0), H,=-YBlol.
() = SAVE) RSBk @

In Eq. (4), Ay’ = Ay (p;, q;) account for the possibility of a
direct coupling of the controlling fields V" with the bath
variables ¢;, p;, while B = Bl (p,, q;) describe the usual
coupling of the spins with the oscillator bath. Already in
the linear response approximation, the bath couplings (4)
produce a frequency-dependent renormalization of the
control Hamiltonian H(7) [Eq. (2)], as well as the thermal
bath heating via the dissipative part of the corresponding
response function. Both effects become more of a problem
with increased spectral width of the controlling signals V}'.
In this work we do not specify the explicit form of the
coupling Hy (7). Instead, we minimize the spectral width of
the constructed pulses.

Closed system.—In a qubit-only system with the
Hamiltonian H(r) = Hc(f) + Hg, the effect of the applied

fields is fully described by the evolution operator U(%),
U(1) = —i[Hc(1) + Hs]U(1), vuoy=101. )

As usual, the TDPT is introduced by separating out the bare
evolution operator,
U(r) = UgR(1),  Uy(t) = —iHc(Up(1).  (6)
Then, the operator R(f) obeys the equation
R(1) = —iHsR@W),  Hs() = US)HsUo(0), (1)

which can be iterated to construct the standard expansion
R(r) =1+ R, (r) + Ry(¢) + - - - in powers of (tHy),

R,.() = —iHgOR,(1),  Ro() =1 (8)
For a finite system of n qubits and a given maximum order
K of the expansion, Egs. (6)—(8) are a set of coupled first-
order ordinary differential equations for the 2" X 2" ma-
trices Uy, Ry, Ry, ..., Rg, and can be integrated efficiently
using any of the available extrapolation schemes.
Obviously, for a given system, solving the full equations
(5) is simpler by a factor of at least (K + 1). However, it is
the analysis of the perturbative expansion that is the key for
achieving the scalability of the results.

The standard Magnus expansion can be readily obtained
by integrating Eqgs. (8) formally and rewriting the result in
terms of cumulants,

R(t) = exp(C; + C, + -+ ), C = _iftdflﬁs(fl),
0

1 [t 1, ~ -
G- -3 ﬁ dt, ﬁ dny[As(), As)]... )

Generally, the term C, contains a k-fold integration of the
commutators of the rotating-frame Hamiltonian H(z;) at
different time moments #; and has an order (tHg)*. The
advantage of the cumulant expansion is that it does not
contain the disconnected terms arising from different parts
of the system. For an arbitrary lattice model of the form (3),
with bonds representing the qubit interactions, the terms
contributing to kth order can be represented graphically as
connected clusters involving up to & lattice bonds; gener-
ally such clusters cannot have more than n = k + 1 ver-
tices. Thus, to obtain the exact form of the expansion up to
and including Kth order, one needs to analyze all distinct
clusters with up to K + 1 vertices. For an infinite chain
with NN couplings, these are finite chains with up to K
bonds and K + 1 vertices.

The discussed cluster theorem [13] appears to offer a
distinct advantage to the Magnus expansion compared
with the regular perturbation theory. On the other hand,
evaluation of multiple integrals (9) directly is computa-
tionally challenging, which limits the use of higher-order
Magnus expansions for numerics. We note, however, that
the order-K universal self-refocusing condition C; =
C, = ... = Cg = 0 is formally equivalent to

Ri=R,=...=Ryg=0. (10)

The matrices R; in the latter condition are much easier to
evaluate numerically using Egs. (6)—(8). Yet the benefits of
the cluster theorem remain: to Kth order only clusters with
up to K + 1 vertices need to be analyzed.

We implemented the described scheme using the stan-
dard fourth-order Runge-Kutta algorithm for solving
coupled differential equations and the GSL [17] numerical
package for matrix operations. The coefficient optimiza-
tion was done using a combination of simulated annealing
and the steepest descent method. The trial pulse shapes
were encoded in terms of their Fourier coefficients [18],
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V(t+7/2)=Ay+ ZA,,, cos(mQr) + B, sin(mQr), (11)

where the angular frequency () = 277/7 is related to the
pulse duration 7. The target function for single-pulse opti-
mization included the sum of the magnitudes squared of
the matrix elements of the zeroth-order mismatch matrix
[Uo(7) — Utgrger)> and of the matrices Ry(7), k = 1,..., K.
The minimization continued until these contributions went
down to zero with the numerical precision.

As the simplest application of the formalism, we de-
signed a number of inversion (77-) pulse shapes [19], self-
refocusing to various degrees with respect to the Ising
interaction; their coefficients are listed in Table II. To re-
duce the spectral width of an arbitrary sequence of such
pulses, we required additionally that the function (11)
vanishes along with a number of its derivatives v, 1 =
1,2,...,2L — 1, at the ends of the interval, t = 0, 7.

These shapes can work in known high-order pulse se-
quences [20] as a drop-in replacement of hard pulses. We
note that in our setup there is no gap between subsequent
pulses; the pulses follow back to back with the repetition
period 7. The system is “focused’ at the end of each time
interval. Such a scheme with a common “clock” time 7 is
convenient, e.g., for parallel execution of quantum gates in
different parts of the system. For each qubit, various pulses
(or intervals of no signal) can be executed in sequence. The
performance of such sequences can be analyzed in the
same manner as that of a single pulse. Namely, we inte-
grate Egs. (6)—(8) over the full duration ¢ of the pulse
sequence; the order of the sequence is the number K of
the exactly cancelled terms in the perturbative expansion of
R(7). After N = t/7 steps, the error in the unitary evolution
matrix would scale as « N7X*! = ¢7K; the corresponding
gate fidelity (defined as the probability of error, either
average or maximum) would scale as 1 — O(72K).

In Table I, we illustrate the quality of the obtained pulses
by comparing their performance in several refocusing se-
quences for different models. “Ising”: the Ising-only in-
teraction [Eq. (3) with all J* = 0]; “xxz”: the xxz spin
chain with both J* and J* nonzero; “‘bath”: Ising spin
chain coupled to a thermal bath generating slow (compared
to 7) phase modulation, simulated as H, [Eq. (4)] with
random time-independent coefficients B (see further dis-
cussion on open systems below). The pulse sequences are
listed in the caption; these are “‘best” sequences at given

TABLE II.

length for all three pulse shapes found by exhaustive
search. The fact that such a brute-force optimization ap-
proach works is entirely due to the efficiency of the
method.

The most interesting is the length-8 sequence
“X2Y3X3Y3Y3X2Y3X3,” where X? is a 7 pulse in x
direction applied on every odd site, Y5 is a 7 pulse in
negative y direction on even sites, etc. This sequence is the
best among the length-8 sequences for both the Ising and
the xxz (J* # 0) models, and, additionally, it protects
every qubit from phase decoherence due to low-frequency
noise. Our second-order self-refocusing pulses are clearly
advantageous, especially if the Ising coupling is dominant.
The corresponding errors scale as (J.7)® compared with
that for the standard (first-order) Hermitian pulse where
gate error scales as (JZT)4 [the gate fidelities differ from
unity by O((J,7)'?) and O((J,7)%)].

These pulses were designed for systems with dominant
NN Ising coupling, and this is the situation where they are
most useful as a replacement of, say, Gaussian pulses. For
example, when the pulse Q; along with analogously de-
signed second order 7/2 and 27 pulses were used to
simulate the BB; composite pulse [21] designed to com-
pensate for amplitude errors to third order, the results for a
single spin were essentially identical to those with
Gaussian pulses, with errors cubic in the amplitude mis-
match. However, when used in an Ising chain, the perform-
ance of the BB, sequence with Gaussian pulses deteri-
orated linearly in J,7 already with zero amplitude mis-
match, while for our second-order pulses the additional
error was smaller, scaling as the product of (J,7) and the
amplitude mismatch. Clearly, if the two sources of errors
are comparable, combining high-accuracy BB composite
pulse and the second-order pulses may be superficial;
simpler pulse sequence and/or pulses with first-order com-
pensation could give a comparable accuracy.

Open systems.—Qualitatively, the effect of the refocus-
ing pulses on the thermal bath coupling H,, [Eq. (4)] can be
most readily understood in the rotating frame defined by
the bare evolution operator U, = U,(r) [Eq. (6)],

~ 1 ! !
H,(0) = UgH,Uy = 5 3 Bil(p;, a)O8" (ol (12)

Ly

!
For refocusing, the rotation matrices Q4" (¢) are periodic
with the full sequence period 7; they can be written as a

Fourier coefficients A,, [Eq. (11)] for the constructed pulses (pulses are symmetric; all B,, = 0). Shapes S; and Q,,

respectively, are first (K = 1) and second (K = 2) order self-refocusing inversion pulses for the Ising coupling, with 2L derivatives
vanishing at the ends of the interval. The fixed-time errors scale with the duration of the pulse as « (7.J,)X.

Sy 0.5 —1.2053 194466 0.4796460 175 0.2256 734291

S, 0.5 —1.1950755990 0.7841246 569 0.0738054 432 —0.1628 545011

0, 0.5 —1.1374003 264 1.5774784244 —0.6 825954 606 —0.2574 826374

0, 0.5 —1.0965 122417 1.5309957409 —1.1470791 601 0.0020722 004 0.2105234 605
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sum of harmonics with the main frequency Q = 277/7,

! ! A ~
0t (1) = S Clt' o180, ma,
m

Q,, (13)
The constant-field first-order refocusing condition (aver-
age Hamiltonian vanishes to leading order) is equivalent to

!
a cancellation of some linear combinations of C5/* (e.g.,

C‘;’OLI = 0 for phase noise assumed for thermal bath in
Table I). As a result, the environmental modes at low fre-
quencies get modulated and are effectively replaced by

those at higher frequencies, ® — @ + Qm, m # 0, leading
to a significant reduction of the decoherence caused by
resonant decay processes [22—24]. On the other hand, fast
modes are mostly unaffected; modulation has essentially
no effect on a “fast” (e.g., 6-correlated) thermal bath.

Quantitatively, the effect of refocusing can be under-
stood with the quantum kinetic equation (QKE) in the
rotating frame, with the kernel accurate at least to order
K to analyze order-K refocusing [25]. For large ), the
density-matrix dynamics separates onto sectors with fre-
quencies around Qm. The slow sector, m = 0, carries the
main part of the total weight, with that of the remaining
(generally, rapidly-decaying) sectors totaling ~A(0)/?,
where A(t — ') = |[{B*(t)B*'(¢))|| is a norm of the cor-
relation matrix of the fluctuating field. Only the dynamics
in the slow sector is protected by the refocusing. In par-
ticular, the analysis of the QKE with the leading second-
order kernel shows that already with first-order (K = 1)
constant-field refocusing direct decay processes require
excitations at frequencies w = (), which may dramatically
reduce the dissipative part of the QKE kernel. The non-
resonant reactive processes are also suppressed: the rate
of phase errors is ~A(0)/Q with K = 1 refocusing and
~|A"(0)]/Q? (primes denote time derivatives) with K = 2
refocusing, as, e.g., for length-8 sequence in Table I.
Generally, these results [25] apply equally for soft- and
hard-pulse refocusing, and are consistent with established
results on kinetics of few-level systems in rf field [22], and
with the properties of hard-pulse sequences for low-
frequency environment [24,26].

To conclude, we presented an efficient scheme for de-
signing high-order soft pulses and soft-pulse sequences in a
scalable fashion, without the need for solving the full
Hamiltonian. Soft (narrow-spectrum) pulses are indispens-
able for their selectivity and reduced coupling to environ-
mental modes, which in turn suppresses signal distortions
and heating. Use of high-order pulses is especially efficient
if one interaction (e.g., the Ising term) is dominant. High-
order pulse sequences generally offer better accuracy and
can dramatically reduce the decoherence due to coupling
with low-frequency environment.

We thank M. I. Dykman and D. Lidar for encouragement
and illuminating discussions.
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