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Magnetic Correlations in the Hubbard Model on Triangular and Kagomé Lattices

N. Bulut, W. Koshibae, and S. Maekawa
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

CREST, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
(Received 14 February 2005; published 13 July 2005)
0031-9007=
In order to study the magnetic properties of frustrated metallic systems, we present, for the first time,
quantum Monte Carlo data on the magnetic susceptibility of the Hubbard model on triangular and kagomé
lattices. We show that the underlying lattice structure determines the nature and the doping dependence of
the magnetic fluctuations. In particular, in the doped kagomé case we find strong short-range magnetic
correlations, which makes the metallic kagomé systems a promising field for studies of superconductivity.
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FIG. 1 (color online). (a) Sketch of the triangular and the
kagomé lattices. The kagomé lattice is obtained from the trian-
gular lattice by removing the sites with the open circles. (b) First
Brillouin zones of the triangular (black) and the kagomé (red)
lattices.
Frustrated spin systems have received significant atten-
tion because of the possibility of novel magnetic ground
states and excitations [1]. The triangular spin-1=2
Heisenberg model has long-range magnetic order in the
ground state, while the spin-1=2 Heisenberg model on the
kagomé lattice is considered to be disordered. The discov-
ery of superconductivity at 5 K in NaxCoO2 � yH2O has
generated new interest in frustrated interacting systems [2].
Furthermore, superconductivity has been recently discov-
ered in�-pyrochlore osmate KOs2O6 with a Tc of 10 K [3].
This generates further interest in the magnetic properties of
frustrated interacting systems.

In cobaltates, cobalt and oxygen ions form a two-
dimensional triangular network. The hopping matrix ele-
ment of electrons in the cobalt 3d orbitals is not isotropic,
and it has been shown that the triangular CoO2 lattice
consists of four coupled kagomé sublattices [4]. Hence, it
is important to compare the magnetic properties of inter-
acting systems on triangular and kagomé lattices. The
electronic properties of the t-J and the Hubbard models
on the triangular and kagomé lattices have been studied
using various techniques of many-body physics. The tri-
angular t-J model was investigated within the resonating-
valence-bond framework [5–7] and by using high-
temperature expansions [8]. The triangular Hubbard model
was studied with the path-integral renormalization-group
(RG) [9], the one-loop RG [10], and the fluctuation-
exchange (FLEX) [11] approaches. The FLEX method
was also used for studying the magnetic properties of the
Hubbard model on the kagomé lattice [12].

In this Letter, we compare the nature of the magnetic
correlations in the Hubbard model on the triangular and the
kagomé lattices using quantum Monte Carlo (QMC) simu-
lations. We consider the Hubbard model on the kagomé
lattice to be a simple limiting case to explore for new
physics due to the underlying orbital structure in frustrated
interacting systems. The orbital degrees of freedom create
the possibility for mixing the spin and charge channels, and
hence of new electronic states. This is important because of
the general ongoing research effort on the transition metal
oxides. These are our motivations for performing the QMC
05=95(3)=037001(4)$23.00 03700
calculations on the Hubbard model on the triangular and
the kagomé lattices. We are particularly interested in the
doped cases of these models for which there are no exact
calculations on the magnetic properties.

In the following, we will see that the triangular Hubbard
model has strong antiferromagnetic (AFM) correlations
near half filling and at low temperatures, when the
Coulomb repulsion U is of the order of the bandwidth.
On the other hand, for weak U, the magnetic correlations
saturate as T ! 0. In the kagomé lattice, the unit cell
consists of three atoms and the unit cells form a triangular
lattice, as seen in Fig. 1(a). Consequently, there are three
bands of magnetic excitations. Two of these modes involve
enhanced short-range AFM correlations. In particular, we
find that in the doped kagomé case the low-frequency
short-range AFM correlations are stronger in comparison
to the triangular lattice. Hence, it would be useful to
investigate the possibility of superconductivity in metallic
kagomé systems. We think that the results presented here
will be useful for understanding the magnetic properties of
frustrated interacting systems.

The Hubbard model is defined by
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FIG. 2 (color online). Magnetic susceptibility ��q
 versus q of
the triangular Hubbard model at zero frequency. Here, q is
scanned along the path � ! M ! K ! � in the BZ of the
triangular lattice illustrated in Fig. 1(b). The temperature evolu-
tion of ��q
 at half filling is shown in (a) for U � 4jtj and in (b)
for U � 8jtj. In these figures, the dotted curves represent results
for the noninteracting case at the lowest temperature used in that
figure. The evolution of ��q
 versus q with the electron density
hni is shown in (c) for U � 8jtj and T � 0:33jtj. Here, the dotted
curve represents the results for the noninteracting system at
hni � 1:3 and T � 0:33jtj.
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where t is the hopping matrix element between the nearest-
neighbor sites, U is the on-site Coulomb repulsion, and �
is the chemical potential. Here, ci� (cyi�) annihilates (cre-
ates) an electron with spin � at site i, and ni� � cyi�ci�. In
the following, we will take t < 0 and consider hni 
 1:0,
which is the appropriate case for the cobaltates [4]. In
obtaining the data presented here, the determinantal
QMC technique [13] was used. At low T, this technique
has the sign problem [14] for the triangular and kagomé
lattices even at half filling, due to the absence of the
particle-hole symmetry. Because of the sign problem, we
have used a parallel computer to obtain the QMC data
presented here.

For the triangular lattice, the magnetic susceptibility at
frequency ! � 0 is defined by
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e�H�. Here, � will be plotted in units of jtj�1.
The kagomé lattice is a three-band model, since each

unit cell consists of three sites. Hence, each lattice site on
the kagomé lattice can be represented by the indices �l; d

where l is the unit-cell index and d denotes the atomic site
in a particular unit cell. The corresponding Brillouin zone
(BZ) is reduced with respect to the triangular case as
illustrated in Fig. 1(b). For the kagomé case, we define
the magnetic susceptibility at ! � 0 as
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hilation (creation) operator of an electron with spin � at
lattice site �i; d
. Diagonalizing the 3� 3 matrix �dd0 �q
,
we obtain ���q
, which describes the kagomé magnetic
bands. We also note that already for the noninteracting
(U � 0) case, the triangular and the kagomé lattices have
different properties. For t < 0, the one-electron density of
states N�!
 of the triangular lattice has a van Hove singu-
larity at hni � 0:5. For the kagomé lattice, there is a
�-function singularity in N�!
 at the bottom of the band
and there are van Hove singularities at hni � 1:16 and 1.51.
In addition, N�! � 0
 vanishes at hni � 1:33. These fea-
tures of N�!
 are also reflected in the magnetic suscepti-
bilities of the noninteracting case.

We first present results for the triangular lattice at half
filling. Figure 2(a) shows ��q
 versus q for U � 4jtj on
various size lattices as the temperature is lowered. Here, it
is seen that ��q
 has a broad peak centered at theK point of
the BZ. We also note that ��q
 does not vary significantly
at low T. For comparison, �0�q
 for the noninteracting
system at T � 0:17jtj is shown by the dotted curve.
Figure 2(b) displays ��q
 versus q for U � 8jtj at half
filling, where we observe a large Stoner enhancement of
the AFM correlations. In contrast with the U � 4jtj case,
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here, ��q
 at the K point grows rapidly with a Curie-like T
dependence, as T decreases from 1jtj to 0:33jtj. However,
it is not known whether ��q
 saturates at lower T for U �
8jtj. These results show that the T dependence of ��q

depends strongly on the value of U=jtj in the triangular
Hubbard model, in agreement with the findings of the path-
integral RG calculations [9].

Figure 2(c) shows the filling dependence of ��q
 for
U � 8jtj and T � 0:33jtj. Here, we observe that the AFM
correlations decay monotonically as the electron filling is
varied from 1.0 to 1.3. We have also performed calcula-
tions for ��q
 at higher electron fillings. We find that, when
hni is increased to 1.5, the peak in ��q
 shifts to the M
point. Upon further doping to hni � 1:75, we find that, for
U � 8jtj and T � 0:2jtj, the Stoner enhancement is about
20%. Hence, for this dilute hole concentration, the mag-
netic correlations are weakly affected by the presence of
the on-site U at this temperature.

Next, we discuss the magnetic properties of the Hubbard
model on the kagomé lattice. Figure 3(a) shows QMC
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results on ���q
 for U � 4jtj and T � 0:2jtj at half filling.
Here, ���q
 for the three magnetic bands are plotted as a
function of q, and the red curves represent results for the
noninteracting case. In this figure, we observe that the top
band (� � 1) is flat in q space, and the second magnetic
band (� � 2) is degenerate with the first one at the zone
center. The third mode is weaker in magnitude and exhibits
a smooth q dependence. Figure 3(b) shows ���q
 versus q
for U � 8jtj and T � 0:33jtj at half filling. The general
features are similar to those seen in Fig. 3(a), however, here
the Stoner enhancement is larger. In Fig. 3(c), the QMC
results are shown for U � 4jtj and T � 0:14jtj at hni �
1:15. These figures show that the features of ���q
 are in
correspondence with those of the noninteracting case.

We note that the kagomé lattice is obtained from the
triangular lattice, as illustrated in Fig. 1(a), by removing
the sites with the empty circles. This is equivalent to
putting an infinitely repulsive one-electron potential at
these sites. Bragg scattering from this static charge-den-
sity-wave field then folds the BZ of the triangular lattice,
and also mixes the different wave vector components of the
FIG. 3 (color online). Magnetic susceptibility ���q
 versus q
for the Hubbard model on the kagomé lattice at zero frequency.
Here, the three magnetic modes of ���q
 are shown at each q
point, as q is scanned along the path � ! M0 ! K0 ! � in the
first BZ of the kagomé lattice. Results on ���q
 at half filling are
shown in (a) for U � 4jtj and T � 0:2jtj and in (b) for U � 8jtj
and T � 0:33jtj. These data have been obtained on lattices with
6� 6 and 4� 4 unit cells. In (c), results are shown for hni �
1:15 with U � 4jtj and T � 0:14jtj. In these figures, the data
points for the 6� 6 lattice are connected by black lines, and the
red curves represent the results for the noninteracting case.
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spin fluctuations. It is this process which creates the ka-
gomé magnetic bands.

We next discuss the T dependence of the magnetic
correlations in the kagomé lattice. Figure 4(a) shows
�1�q � 0
 versus T for U � 4jtj and 8jtj at hni � 1:0
and 1.15. Here, we observe that, at half filling and for U �
4jtj, �1�q � 0
 saturates as T decreases. On the other hand,
for U � 8jtj, �1�q � 0
 has a strong T dependence. For
hni�1:15 and U � 4jtj, we observe that �1�q � 0
 gets
enhanced at low T, and becomes larger than at half filling.
We also see that the enhancement of �1�q � 0
 depends on
the lattice size. However, this type of nonmonotonic dop-
ing dependence was not observed for the triangular Hub-
bard model. In addition, we observe that, for U � 8jtj and
at half filling, �1�q � 0
 exhibits a Curie-like T depen-
dence for 0:25jtj � T � 1:0jtj. In the ground state of the
Heisenberg model on the kagomé lattice, it is considered
that a spin gap �S � J=20 exists, where J is the magnetic
exchange [1]. For U � 8jtj, we have J � 4t2=U � 0:5jtj,
which gives �S � 0:025jtj. We expect that ���q
 saturates
before T becomes comparable to �S.
FIG. 4 (color online). (a) �1�q � 0
 versus T for the kagomé
lattice with U � 4jtj and 8jtj at hni � 1:0 and 1.15. (b) Zero-
frequency component of the magnetic correlations between the
nearest-neighbor sites C versus T for the kagomé and the
triangular lattices at hni � 1:15 for U � 8jtj and 4jtj. In these
figures, the results on the kagomé lattice were obtained for 6� 6
(filled points) and 4� 4 (empty points) unit cells, and the results
on the triangular lattice are for 12� 12 (filled points) and 8� 8
(empty points) lattices. In addition, the data points for the 6� 6
kagomé and the 12� 12 triangular lattices have been connected
by solid lines.
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The FLEX calculations for the Hubbard model on the
kagomé lattice find that the leading magnetic mode is
nearly q independent, and the tendency to electronic in-
stabilities is suppressed [12]. We note that while the � � 1
mode is nearly q independent, the � � 2 mode has ferro-
magnetic q dependence in the sense that it decreases away
from the � point. In addition, the eigenvectors of �dd0 �q

show that, at q � 0, the � � 1 and 2 modes describe
excitations involving the AFM polarization of the spins
within a unit cell [15]. Away from q � 0, these modes have
additional structures, however they involve AFM polar-
izations over most of the BZ. Hence, these two modes
contain enhanced short-range AFM fluctuations. Within
the context of superconductivity mediated by magnetic
fluctuations, a relevant quantity is the zero-frequency com-
ponent of the magnetic fluctuations between the two
nearest-neighbor sites i and j,

C �
Z �
0
d�hmz�ri; �
mz�rj
i: (4)

In Fig. 4(b), we compare C versus T for the triangular and
the kagomé lattices for U � 4jtj and 8jtj at hni � 1:15.
This figure shows that, at these temperatures, the nearest-
neighbor AFM correlations are stronger for the kagomé
lattice, even though the ground state of the spin-1=2
Heisenberg model has long-range order on the triangular
lattice and it is disordered in the kagomé case. Hence, it
would be useful to investigate the possibility of super-
conductivity in metallic kagomé systems.

Finally, we discuss the implications of these data for the
magnetic correlations observed in the cobaltates. The co-
baltates have a rich phase diagram with superconductivity
found for x � 0:35 in NaxCoO2 � yH2O [2] and with mag-
netic order and large quasiparticle renormalizations ob-
served in NaxCoO2 when x is near 0.75 [16]. For the
triangular Hubbard model, we find that the magnetic cor-
relations are strongest at half filling, and the correlation
effects are weak in the overdoped regime hni 
 1:5. In
contrast, for the kagomé lattice we have seen that the
magnetic correlations can be stronger in the doped case
when U � 4jtj. However, in both of these models, we find
that the correlation effects are most prominent in the
vicinity of half filling at the temperatures where the
QMC calculations were performed. We note that it would
be useful to determine experimentally the q dependence of
the magnetic fluctuations in the superconducting
NaxCoO2 � yH2O.

In this Letter, we have presented exact numerical results
on the magnetic correlations in the Hubbard model on the
triangular and kagomé lattices. At the temperatures where
the QMC calculations were performed, we find, in both of
these models, that the magnetic correlations grow rapidly
as T decreases at half filling for U � 8jtj, while they
saturate when U � 4jtj. In the triangular Hubbard model,
the AFM correlations decay monotonically with the elec-
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tron doping. In the kagomé case, on the other hand, we
have seen that the magnetic correlations can be stronger in
the doped case when U � 4jtj. We have also seen that in
the kagomé case the BZ is reduced and there are three
modes of magnetic excitations. The two leading modes
involve short-range AFM correlations. In particular, we
find that the low-frequency short-range AFM correlations
are stronger in the doped kagomé case than in the triangu-
lar case. This makes the interacting metallic systems with
kagomé type lattice structures a promising field for studies
of superconductivity. We think that these results will be
useful for understanding the magnetic properties of frus-
trated interacting systems.
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