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We formulate a U(1) gauge theory of the Hubbard model in the slave-rotor representation. From this
formalism it is argued that spin liquid phases may exist near the Mott transition in the Hubbard model on
triangular and honeycomb lattices at half filling. The organic compound �-�BEDT-TTF�2Cu2�CN�3 is a
good candidate for the spin liquid state on a triangular lattice. We predict a highly unusual temperature
dependence for the thermal conductivity of this material.
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The Hubbard Hamiltonian is the simplest model which
exhibits the Mott transition. For small Coulomb repulsion
the Fermi liquid phase occurs. In the large Coulomb re-
pulsion limit the model reduces to the t-J model which has
an insulating ground state and spin order at half filling. In
the intermediate region a spin liquid phase, i.e., an insula-
tor without spin order, may arise. This spin liquid phase is
more likely to occur if there is frustration.

Recent experiments indicate that the spin liquid ground
state may be realized in the organic compound
�-�BEDT-TTF�2Cu2�CN�3 which is just on insulating
side of the Mott transition [1]. While the high temperature
spin susceptibility can be fitted to a Heisenberg S � 1=2
model with an exchange energy of 250 K, the spins do not
order down to 32 mK. The susceptibility and Knight shift
[2] drop sharply below �20 K, but remain finite down to
the lowest temperature. The carbon nuclear spin relaxation
rate 1=T1T also saturates to a finite value at low T. An
interpretation in terms of a spin liquid on a frustrated lattice
has been proposed [1] but an alternative explanation in
terms of localization has also been suggested [2]. This
system is effectively described by a Hubbard model at
half filling on a 2-dimensional triangular lattice. On this
lattice the Heisenberg model is known to have an antifer-
romagnetic (AF) ground state. Recently Motrunich has
shown using projected trial wave functions that a spin
liquid state with spinon Fermi surface may be stable if
the t-J model is extended to include higher order virtual
hoppings, such as the ring exchange terms [3]. If true, this
will be a realization of the resonating valence bond (RVB)
idea of Anderson [4]. In order to include such charge
fluctuations effects, it is clearly desirable to study the
Hubbard model near the Mott transition.

There is numerical evidence that the Hubbard model on
the triangular lattice does not have AF order for moderate
Coulomb repulsion in the insulating phase [5]. However,
the nature of the disordered state is not understood.
Recently, Florens and Georges [6] introduced the slave-
rotor representation of the Hubbard model. This method is
05=95(3)=036403(4)$23.00 03640
more economical than the conventional representation [7]
which requires 4 slave bosons. From this theory the Mott
transition on the square lattice was successfully described
at the mean-field level [6]. Thus it is of great interest to see
whether the spin liquid phase is predicted by the slave-
rotor theory in the triangular lattice. If a spin liquid mean-
field state is found, the next question is the stability of the
state. Although it is expected that the U(1) gauge theory
will emerge as a low energy theory, it is not clear how to
derive it from the mean-field theory of Ref. [6]. The first
objective of the present Letter is to formulate a U(1) gauge
theory of the Hubbard model in the slave-rotor representa-
tion. Then we apply the formalism to the triangular and
honeycomb lattices to find the spin liquid mean-field states.
The low energy theories of some spin liquid states are
shown to be a compact U(1) gauge theory coupled with
gapless spinons. Finally we discuss the deconfinement
phase of the U(1) gauge theory in connection with the
experimentally observed spin liquid behavior in the or-
ganic material.

The Hubbard Hamiltonian reads
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Here ci� is the annihilation operator of electron with spin�
at site i. tij � jtijje�iAij is the complex hopping integral
with Aij representing either external electromagnetic (EM)
vector potential or an intrinsic phase coming from the
overlap of atomic wave functions. U is the on-site
Coulomb repulsion. In the slave-rotor representation the
electron operator is written as ci� � fi�e�i�i , where fi� is
the spinon annihilation operator and e�i�i the lowering
operator of the ‘‘angular momentum’’ Li which corre-
sponds to the charge quantum number. The enlarged
Hilbert space is constrained by Li � ��f

y
i�fi� � 1. The

partition function is written as a path integral of e�S0 over
f, f�, �, and h where
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Here hi is the Lagrangian multiplier field imposing the constraints Li � ���f
y
i�fi� � 1� � 0, � is the chemical potential,

and x the hole doping density from half filling. In the above action every term is quadratic in f and � except the hopping
term. In Ref. [6] the hopping term was decomposed as �� � h�i�	 �h�i � h�ih�i with � � ��f�i�fj� and � �
ei��i��j�. Here we devise a more systematic way of decomposing the hopping term, so that the saddle point coincides with
the previous mean-field theory. The merit of the present method is that it enables us to expand about the saddle point to
obtain a low energy effective theory. To decompose the hopping term we use the identity
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and set � � ��jtijj, �ij � ��f�i�fj�, and �ij �
ei��i��j�Aij�. This is a bit different from the conventional
Hubbard-Stratonovich decomposition of a complete square
and we encounter two problems. First, we need to intro-
duce two independent complex fields �ij and �ji to de-
compose the hopping term and its complex conjugate, so
that for a given configuration of �ij and �ji, the action is
not real. Second, it appears that the same �ij field decou-
ples the fermion and the rotor term and it is not clear how
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we can recover the Florens-Georges’s mean-field theory
where h�i � h�i. Both difficulties are resolved as follows.
We change the variables of integration by �ij �
j�ijje

wij	i�a	ij	aij� and �ji � j�ijje
�wij	i�a	ij�aij�. It is em-

phasized that wij and a	ij are necessary in the integration
because �ij and �ji are independent complex variables
(not complex conjugate to each other). We follow
Florens and Georges to replace ei�i by the boson variable
Xi with a constraint jXij � 1 which is imposed by a
Lagrangian multiplier #i. The action now takes the form
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Note that aij and hi correspond to the gauge field associ-
ated with the U(1) gauge transformation: fi� ! ei’ifi�,
Xi ! ei’iXi, aij ! aij 	 �’i � ’j�, and hi ! hi � @�’i.
Here we choose to couple the external EM field (Aij) to the
boson.

The action (4) remains real for the fluctuations of j�ijj
and aij. It becomes complex for the fluctuations of wij, a	ij ,
#i, and hi. For the latter set of variables we lift the contour
of integration into complex plane via analytic continuation
to find a saddle point in the imaginary axis. Allowing for
fluctuations along the deformed contour we write j�ijj�
j~�ijj	%j�ijj, aij� ~aij	%aij, wij� i ~wij	%wij, a	ij�

i~a	ij	%a
	
ij , #i� i~#i	%#i, and hi� i~hi	%hi, where

quantities with tildes are real and represent the saddle point
value. The appearance of imaginary saddle point is familiar
in the treatment of the constraint field in the usual slave-
boson models. In particular, fluctuations in the %a	ij and
%wij directions are stable and massive. Together with
%j�ijj, these massive modes are negligible for energy scale
less than t or U. The low energy effective Lagrangian is
reduced to fermions and X bosons coupled to the compact
U(1) gauge fields aij and hi, together with a constraint field
#i. If we choose, we can integrate over the #i field to
restore the � field resulting in the effective Lagrangian
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where � refers to the direction of neighboring sites con-
nected by the hoppings. a�j and a�j are, respectively, the
spatial and temporal gauge fields coming from %aj	�;j
and %hj in (4). The saddle point (~�fij, ~�Xij, ~hi, ~#i) is
determined from the extremum condition of the free en-
ergy and is identical to the mean-field theory of Florens
and Georges [6], where ~�fij � j~�ijje

~a	ij�i� ~wij�~aij� and ~�Xij �

j~�ijje
�~a	ij	i� ~wij	~aij�. It is interesting to note that the auxil-

iary fields associated with the amplitude (wij) and phase
(a	ij ) fluctuations in the original integration switched their
roles to make the free energy real at the saddle point and
resolve both difficulties mentioned earlier. Equation (5) is
the first main result of this Letter.

Here we remark on the connection between the slave-
rotor theory [6] and the conventional slave-boson theory
[7]. In the slave-rotor theory the boson is relativistic while
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FIG. 1 (color online). The amplitudes of hopping order pa-
rameters of spinon (�f) and boson (�X), the Bose condensation
amplitude (Z), and the uniform flux (� in unit of �) per unit cell
in the isotropic triangular lattice at half filling and T � 0 K.
50� 50 lattice is used for the figures in the main panel. The inset
shows the size dependence of Z near the Mott transition. The
arrow indicates the direction of linearly increasing size from
N � 20� 20 to 80� 80. The thick line denotes Z0 in the
thermodyamics limit obtained from the finite size scaling, Z �

Z0 	
Z1
N 	 Z2
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the conventional slave-boson fields are nonrelativistic. The
relativistic X boson contains particle (holon) and antipar-
ticle (doublon). In the insulating phase the bosons are
gapped, and holon and doublon are bound. In the metallic
phase they becomes gapless with unbound holon and
doublon.

We apply the above formalism to find mean-field states
in the triangular and honeycomb lattices at zero tempera-
ture. We focus on the half filling where ~h � 0. We have
checked that the staggered flux states, where the fluxes take
on alternating signs, are always unstable relative to the zero
flux state in the parameter range studied. For the Heisen-
berg model on the triangular lattice the fully gapped state
with � flux through the unit cell (henceforth, ‘‘�-flux
phase’’) is known to be stable among paramagnetic states
[8]. This is a state with flux �=2 through each triangle; it
breaks time reversal symmetry and is closely related to the
chiral spin state [9]. It is of interest to see whether a gapless
state without flux (henceforth, ‘‘uniform phase’’) can be
stabilized by charge fluctuations near the Mott transition.
In our mean-field theory the metallic phase is characterized
by a nonvanishing amplitude of Bose condensation which
is given by Z � 1

N hX
��k � 0; ��X�k � 0; ��i, where X�k; ��

is the boson field in the momentum space and N the
number of unit cells. For the isotropic triangular lattice
with a lattice size N � 50� 50 a direct first order transi-
tion to the�-flux phase is found to occur atUc=t � 2:73 as
is shown in Fig. 1. However, we found that Z, which
determines the metal-insulator boundary, is particularly
sensitive to lattice size and decreases systematically with
lattice size while the critical doping for the onset of the
�-flux phase does not change. In the thermodynamic limit
we found that the uniform phase is stable over 2:6<
U=t < 2:73 as is denoted by the thick solid line in the inset
of Fig. 1.

In the insulating phase the rotor has a gap and can be
integrated out. This generates the Maxwellian kinetic term,
L � 1

2g2 �@� a�2 with the gauge coupling, g2 � �2

� with �,
the charge gap, and �� t~�f [10]. The low energy theory is
reduced to the compact U(1) gauge theory coupled with
spinons with Fermi surface. The compact U(1) pure gauge
theory is always confining [11] but whether deconfinement
is possible in the presence of matter field is an open
question. Herbut et al. have argued that the theory is al-
ways confining in the presence of Fermi surface [12] or
nodal fermions [13]. Their conclusions actually apply to an
approximate effective action for the gauge field obtained
by integrating out the fermions. Integrating out the fermi-
ons is suspect in the presence of gapless fermions. Indeed
recently Hermele et al. [14] proved that if the spin index is
generalized to N flavors, the problem of 2N 2-component
Dirac fermions coupled to complex U(1) gauge fields is
deconfined for sufficiently large N, thus providing a
counter example to Ref. [13]. The spinon Fermi surface
contains even more low energy excitations. In our view it is
likely that a deconfinement state is possible and we will
proceed with the assumption.
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There is extensive work on the coupling of the Fermi sea
with noncompact gauge fields. A controlled perturbation in
1=N expansion is possible [15–17]. For small q and !, a
quantum Boltzmann description is possible, albeit with
singular Landau parameters which lead to anomalous
power law behavior of many physical quantities [18]. For
q � 2kF, there are singularities in the vertex function and it
remains open whether the spin susceptibility is divergent or
not [19]. In contrast to the square lattice, there is no Fermi
surface nesting for the half filled triangular lattice, and
antiferromagnetic order does not emerge naturally in our
mean-field theory. Thus we believe that the spinon Fermi
surface is stable and is the likely candidate for the spin
liquid state found numerically [5] as well as experimen-
tally [1]. Our conclusion is in agreement with that of
Motrunich [3]. Of course, there remains the possibility of
pairing instability due to residual interaction in any Fermi
liquid, but that may set in at a very low energy scale.

What are the physical implications of the spinon Fermi
surface? Low lying gauge fluctuations produce a T2=3

contribution to the specific heat [3]. The spinons carry
spin and entropy. The spin conductivity (which is difficult
to measure) is proportional to the spinon transport time due
to scattering by gauge fluctuations which goes as T�4=3

[16]. On the other hand, the thermal conductivity is pro-
portional to the energy relaxation time which goes as T�2=3

because small q gauge fluctuations are effective in relaxing
the nonequilibrium energy distribution. Using the quantum
Boltzmann description [18] we predict that �=T � T�2=3

in the clean limit. The divergent behavior will be cut
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FIG. 2 (color online). The amplitudes of the nearest neigh-
bor hopping order parameters of spinon (�f) and boson (�X),
and the Bose condensation amplitude (Z) in the 50� 50 honey-
comb lattice with t0=t � 0 and t00=t � �0:4 at half filling and
T � 0 K. The subscripts 1 and 2 refer to two inequivalent bonds
in the dimerized phase.
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off by impurity scattering. Of course, being an insulator
the charge conductivity is zero. This gross violation of
the usual Wiedermann-Franz law together with unusual
power laws are unique signatures of this particular spin
liquid state. In view of the unusual behavior of
�-�BEDT-TTF�2Cu2�CN�3 it will clearly be of great inter-
est to perform specific heat and thermal conductivity mea-
surements in these materials.

We have also applied the mean-field theory to the honey-
comb lattice. There is no obvious experimental candidate
but the interest in the honeycomb lattice is mainly theo-
retical. For nearest neighbor hopping, the fermion disper-
sion is characterized by 2 inequivalent Dirac cones at the
Brillouin zone corner. On the insulating side of the Mott
transition, the rotor is again gapped and the problem re-
duces to 2N Dirac cones coupled to a compact U(1) gauge
field with N � 2. As mentioned earlier, there is hope that
the theory is deconfined [14]. Furthermore, the linear
density of states greatly reduces the spin susceptibility at
a wave vector connecting the modes, and the AF ordered
state does not emerge naturally in our mean-field theory. It
is amusing to observe that the energy per bond of the naı̈ve
AF state ( � J=4) is identical to that of the dimer trial wave
function. In this sense the honeycomb lattice is between the
one-dimensional chain and the square lattice. Our hope is
that the AF state is not the ground state near the Mott
transition, even though we cannot address the competition
directly in our mean-field theory. Then the remaining
competition is between the dimer state (which breaks rota-
tional symmetry) and the nodal spin liquid. Although not
shown here, we find for the nearest neighbor Hubbard
model the nodal spin liquid state is stable over the narrow
range 1:68<U=t < 1:74 near the Mott transition. Here we
add further hopping terms t0 and t00 as shown in Fig. 2. It is
straightforward to show that t0 does not affect the phase
03640
diagram or the energy as long as it is small compared to t.
For negative t00=t, we found that the spin liquid state is
stable over a wider range of U=t, e.g., 2:3<U=t < 2:6 for
t00=t � �0:4 already in the 50� 50 as is shown in Fig. 2.
This region is the spin liquid phase with nodal spinons.
Unusual power law for the spin response function corre-
sponding to AF fluctuations has been proposed for the state
[20]. Unlike the triangular lattice, the Hubbard model on
the honeycomb lattice with t and t00 can be studied by
quantum Monte Carlo without the Fermi sign problem so
that a definite answer should be attainable [21,22].
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