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Many-Body Spin Berry Phases Emerging from the �-Flux State: Competition
between Antiferromagnetism and the Valence-Bond-Solid State
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We uncover new topology-related features of the �-flux saddle-point solution of the D � 2� 1
Heisenberg antiferromagnet. We note that symmetries of the spinons sustain a built-in competition
between antiferromagnetic (AFM) and valence-bond-solid (VBS) orders, the two tendencies central to
recent developments on quantum criticality. An effective theory containing an analogue of the Wess-
Zumino-Witten term is derived, which generates quantum phases related to AFM monopoles with VBS
cores, and reproduces Haldane’s hedgehog Berry phases. The theory readily generalizes to �-flux states
for all D.
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yê+r
yx ˆˆ ee ++r

FIG. 1 (color online). Lattice used to derive continuum Dirac
theory.
Our understanding on quantum critical points [1] or
phases [2] in D � 2� 1 antiferromagnets, and the issue
of deconfinement therein have recently undergone a rapid
sequence of developments. Competition between antifer-
romagnetic (AFM) and valence-bond-solid (VBS)-like
fluctuations constitute the basic premises for much of these
activities. These theories have brought into wide recogni-
tion the relevance of monopole defects of the AFM order-
parameter and, in particular, the nontrivial Berry phase
factors [3,4] associated with such objects. Here, with these
new perspectives, we revisit the Berry phase effect [5] in
states emerging from the �-flux saddle-point solution of
the Heisenberg antiferromagnet [6], a popular point of
departure for studying undoped and lightly doped cuprate
Mott insulators. We find that their topological properties
are rather rich. Among our findings are (1) a chiral sym-
metry of the �-flux Dirac fermion relating the AFM and
VBS orders, which leads us to a natural framework for
studying their mutual competition, (2) a low energy effec-
tive theory with a novel many-spin Berry phase term for
which the contributions from a composite defect (see be-
low) reproduce the monopole Berry phases, (3) a natural
extension of such a framework to arbitrary dimensions
with possible relevance to higher dimensional spin liquids.

It is worth digressing on the second point before pro-
ceeding to the more technical aspects. An important fea-
ture of monopole excitations is the energy cost due to the
rapid modulation of the AFM order near the singular core.
Meanwhile, in the discussions which follow, the system
takes advantage of the inherent AFM-VBS competition
and saves energy by escaping into a local VBS state at
the defect cores. Such physics share in spirit with work by
Levin and Senthil [7], who study AFM-VBS competition
starting from the VBS side. In that work, the four-state
clock ordering of the VBS state is disordered through the
introduction of Z4 vortices. Close inspection of the lattice
model shows that these defects have an AFM core, as
opposed to conventional vortices with featureless singular
cores; hence their condensation leads to the Néel state.
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Likewise, it is natural to expect a VBS core to be present in
a hedghog-like configuration of the AFM order parameter,
the condensation of which would give way to a VBS state.
Indeed we will see that incorporation of this feature is
essential in recovering the hedgehog Berry phases [3,4]
starting from the �-flux state.

Chiral structure of �-flux state.—The �-flux hop-
ping Hamiltonian on a two dimensional square lattice is
H � � �i;�;�tc

y
i�T�ci�, where T� with � � x; y gen-

erates translation by one site. The �-flux condition
imposes the anticommutation relation fTx;Tyg � 0, which
immediately leads to the spinon’s dispersion E�k� �

�t
���������������������������������
cos2kx � cos2ky

q
with Dirac nodes at k � ��2 ;�

�
2�. It

is convenient to group together the four cites sharing a unit
plaquette (Fig. 1) into components (with spin indices) of a
Dirac spinor, 	 � t� 1�;  2�;  3�;  4�� [8].

To fix the representation of the Dirac gamma matrices,
we account for the �-flux condition by assigning negative
hopping integrals 	t to links residing on every other
horizontal rows; all other links have positive hopping
integrals, �t. Linearizing around the nodes, we arrive at
the Dirac action (hereafter we employ Euclidean space-
time conventions) L � i �	6@	, where the slash indicates
the contraction with the gamma matrices �0 � �0 � �z,
�1 � 	�0 � �x, �2 � �y � �y. Here the first (second) ma-
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trix within a direct product determines the block structure
(the matrix elements within the cells).

A recent study indicates that the algebraic spin liquid
described by the �-flux Hamiltonian is stable against
monopoles, at least for large N [2]. We now move away
from this critical phase by supplementing the theory with
mass terms so that the system can acquire AFM order.
Indeed, earlier works on the �-flux state show [9] that a
substantial improvement on the variational energy is
achieved by adding on a spin density wave (SDW) term
H SDW � �iM�	1�ix�iycyi���z���ci�, which appears to be
in accord with angular resolved photoemission experi-
ments on cuprate Mott insulators [10]. With the aim of
extracting the dependence of the effective action with
possible Berry phase terms on the Néel unit director n,
we make in H SDW the generalization �z ! n  �. Physi-
cally this potential energy term imposes the generation of
an AFM spin moment with a space-time–dependent ori-
entation n��; x; y�, and yields in the continuum limit the
mass term LAFM� imAFM

�	�n ��	. Next, we recall
[8,11] that in contrast to usual irreducible representations
for Dirac fermions in D � 2� 1 where the notion of
chirality is absent (no ‘‘�5s’’), we have two generators of
chiral transformations at our disposal, �3 � �z � �y and
�5 � �x � �y which anticommute mutually as well as with
the space-time components �0, �1, and �2. One reads off
from the explicit matrix elements that the effects of chiral
mass terms proportional to �	�3	 and �	�5	 each amount
to breaking lattice translational symmetry by introducing
bond alternations t! t��	1�i��t in the horizontal (��
x) and vertical (� � y) directions. A crucial observation
here is that the SDW and the two VBS ordering potentials
i �	Q	, �	�3	 and �	�5	 (Q � n  �) all belong to the
family of chirally rotated mass terms Lchiral /

i �	Qei���3���5��Q	 (�;� 2 R); i.e., they transform into
one another by suitable chiral transformations. The 4D rep-
resentation also allows for an alternative class of mass term
[11], �	�3�5	. There the parity anomalies responsible for
Chern-Simons terms do not cancel between the two nodes
(i.e., a chiral spin liquid [12]), and take us out of the
manifold of T-invariant states. We do not retain this term.

Bosonization.—The preceding implies that the sponta-
neous breaking of the chiral symmetry present in the
�-flux state can lead to AFM or VBS orders, depending
on the chiral angles � and � [13]. This has motivated us to
study the AFM-VBS competition in terms of the following
theory with a generalized mass term (equivalent to Lchiral),

L 2�1
F � i �	�6@�mV�2�1��	; (1)

where V�2�1� � v1�x � v2�y � v3�z � i�3v
4 � i�5v

5,
and v�2�1� � �v1; . . . ; v5� is a five component unit vector.
The first three components comprise a vector vAFM �
�v1; v2; v3� which is parallel to n and in competition
with a VBS-like order parameter �v4; v5�. We now show
that this theory can be ‘‘bosonized’’ in terms of v�2�1�, to
03640
yield an effective action which contains a new Berry phase
term. Central to this feat is the following relation [14,15]
satisfied by the Dirac operator D�v�2�1�� � i6@� imV�2�1�

and its Hermitian conjugate,

D yD � 	@2 �m2 	m6@V�2�1�; (2)

which enables one to rewrite the variation of the fermionic
determinant Seff � 	 lndetD�v�2�1�� into a form suitable
for generating a derivative expansion:

�Seff � 	Tr
�

1

	@2 �m2 	m6@V�2�1�

Dy�D
�
: (3)

It is easy to see that a nonlinear sigma (NL�) model
SNL� � 1

2g

R
d3x�@�v�2�1��

2 arises, with g a nonuniversal
coupling constant. Less trivial is an imaginary contribution
to Eq. (3), �S2�1BP , which we pick up at third order in
powers of 6@V�2�1�. As is usual with Wess-Zumino type
terms, one recovers the action S2�1BP from its variation
�S2�1BP with the aid of an auxiliary variable t 2 �0; 1�which
smoothly sweeps the extended function v�2�1��t; x�� be-
tween its two asymptotics, a fixed value at t � 0, say
(0,0,0,0,1), and the physical value at t � 1, v�2�1��x��.
The result is

S 2�1
BP �

	2�i#abcde
Area�S4�

Z 1

0
dt

Z
d3xva@tv

b@�v
c@xv

d@yv
e;

(4)

where Area�S4� � 2�5=2

$�52�
� 8

3�
2. Topologically, this is

	i2� times the winding number which counts the number
of times the compacted ‘‘space-time’’ f�t; x��g isomorphic
to S3 � S1 � S4 wraps around the target space (also S4) for
v�2�1��t; x��. We stress that this term differs in origin from
Hopf or Chern-Simons terms arising in the context of
chiral spin systems [12], which are strongly tied to the di-
mensionality D�2�1. Indeed, as we now show, the fore-
going readily generalizes to theories of AFM-VBS com-
petition in arbitrary space-time dimensions D�d�1,
where for each d we find topological terms that are gener-
alized versions of S2�1BP . We will return to the physical
contents for the specific case of D � 2� 1 later.

AFM-VBS competition for general D.—Our detour
starts by mentioning a generic property of Clifford algebras
[16] which lies behind this generalization. Property: Let n
be the number of matrices spanning the algebra f�i; �jg �
2�ij�i; j � 1; . . . ; n�. Representations for this algebra can
be realized by a set of 2p � 2p �i matrices where either
n � 2p or n � 2p� 1. To see why this goes hand in hand
with the construction of a fermionic theory describing
AFM-VBS competition let us consider a �-flux state on
a d-dimensional hypercubic lattice. The latter, in analogy
with the D � 2� 1 case, is defined by the anticommuta-
tivity among the generators of translation fTl;Tmg � 0 for
l � m (l; m � 1; . . . ; d). This gives rise to Dirac nodes
within the Brillouin zone. (For d � 1, where there are no
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notions of flux-lines which pierce plaquettes, it suffices to
simply start with a free tight-binding model which gives
rise to massless Dirac fermions. The arguments below
apply for this case as well.) In going to the continuum
language, Dirac spinors are constructed by dividing all
lattice sites into cells consisting of 2d sites. The Dirac
matrices �� are therefore 2d � 2d matrices. Meanwhile,
what we wish to construct is a fermionic theory of the form
Ld�1
F � i �	�6@�V�d�1��	, where notations are obvious ex-

tensions from those used in the D�2�1 case. The num-
ber of Dirac matrices required for this purpose is 2d� 1,
03640
there being in addition to the d� 1 space-time components
�0; . . . ; �d, a total of d chiral matrices (�5s), each standing
for the directions available for dimerization. We see that
this fits in nicely with the aforementioned mathematical
property when we put p � d. (It is also straightforward to
work out an explicit derivation of Ld�1

F starting from the
lattice theory.)

The Dirac operator D�v�d�1�� obeys Eqs. (2) and (3), in
which the replacement v�2�1� ! v�d�1� is to be made.
Carrying out the derivative expansion as before we obtain
the low energy effective theory which is an O�3� d� NL�
model supplemented with the topological term
S d�1
BP �

	2�i

Area�Sd�2�

Z 1

0
dt

Z
dd�1x#�1�d�3v

�1@tv
�2@�v

�3@x1v
�4    @xdv

�d�3 : (5)
For D � 1� 1 (d � 1), the isotropic O�4� theory with the
partition function Z�v�1�1�� �

R
Dv�1�1�e

	�SNL��S1�1BP � has
been identified (e.g., [14,17]) with the SU�2�1 Wess-
Zumino-Witten (WZW) model, the fixed point theory for
the S � 1=2 Heisenberg antiferromagnet [18]. It is instruc-
tive to analyze the effect of introducing different types of
anisotropy between the AFM and dimer sectors in this
model [17], breaking down the symmetry to O�3� � Z2
or lower (the appearance of Z2 is a remnant of the under-
lying lattice). First, the effective theory for the AFM limit
reduces at the semiclassical level to theO�3�NL�model at
topological angle , � �, as originally proposed by
Haldane [3]. Taking the opposite limit with complete
dimerization makes the kinetic and Berry phase terms of
the O�3� AFM sector vanish, reflecting the quenching of
the spin moment. An intermediate situation arises when the
anisotropy modulates in space, physically corresponding to
a distribution of nonmagnetic impurities. This induces S �
1=2 moments in the background of a singlet state, whose
spin Berry phases are responsible for novel power-law
correlations. The isotropic (WZW) point may be viewed
in light of this picture as the case where the anisotropy
acquires a temporal dependence as well. The main insight
gained from these examples is how the interplay between
AFM (spin-moment generating) and dimer (spin-moment
quenching) ordering tendencies determines the Berry
phase, which in turn acts back on the ordering of the
system. Turning to higher dimensions, three dimensional
spin liquid systems which may be realized in frustrated
magnets have lately received considerable interest, where
again subtle Berry phase effects due to monopole configu-
rations can be present [19]. We believe our approach as
applied to theD � 3� 1 case could provide a new route to
capture the topological properties of such systems, wherein
the novel Berry phase term S3�1BP would play a key role.

Monopoles and Berry phases.—Returning now to D �
2� 1, the theory at the O�5�-symmetric point enjoys its
role as a higher dimensional analogue of the WZW model
in the sense detailed above. Indeed, a similar parallelism
was substantiated within the context of D � 2� 1 quan-
tum chromodynamics [20]. The case D � 1� 1 is how-
ever unique in that the coupling constant is dimensionless,
and the reappearance of this model here motivates further
studies of possible infrared fixed points from the viewpoint
of exotic quantum spin systems. We now let an anisotropic
term favoring the AFM sector, e.g., of the form 	�vAFM

2

with �> 0, take us away from the isotropic regime.
(This term may be conveniently introduced within a
5-component Ginzburg-Landau theory such as in
Ref. [21]. The spatial structure of hedgehog excitations
discussed below can also be analyzed by resorting to this
framework.) In contrast to similar models in the irreducible
representation [22], here there are no topologically con-
served fermionic currents which forbid changes in the
Skyrmion number Qxy �

1
4�

R
dxdyn  @xn� @yn. Find-

ing Berry phases accompanying such processes requires us
to extract the dependence of Eq. (4) on n, which proceeds
in two steps. We first integrate over the auxiliary variable t.
We use without loss of generality the parametrization v1 �
sin�t’��1, v2 � sin�t’��2, v3 � sin�t’��3, v4 �
sin�t’��4, and v5 � 	 cos�t’�, where � � ��1; . . . ; �4�
is a four component unit vector. The resulting Lagrangian
density is

L �
1

2g
�sin2’�@���

2 � �@�’�
2� � i,q�xy �Lanis; (6)

where , � ��1	 9
8 cos’� 1

8 cos3’�, q�xy �
1
2�2 #abcd�

a@��
b@x�

c@y�
d, and Lanis is the anisotropy

term. Notice that the first and third terms vanish, as they
must, under the spin-moment quenching condition ’ � 0.
Locking the phase field ’ at a constant value, i.e., fixing
the bond alternation strength along one of the spatial
directions yields the D � 2� 1 O�4� NL� model with a
, term [14]. (This intermediate model should thus be
relevant to spin systems with anisotropic bond alternation
[23,24].) Going on to the second step, we now parametrize
the components of � as�1 � sin0n1,�2 � sin0n2,�3 �
sin0n3, �4 � 	 cos0. The Berry phase term can now be
recasted in a way which explicitly depends on monopole-
2-3
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FIG. 2 (color online). Sequence of �
2 rotations around a dual

site which simultaneously rotates the direct sites and the VBS
order parameter.
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like configurations [25]. The result, obtained by integrating
by parts, is

L BP � 	
i
2
�20	 sin20��1	

9

8
cos’�

1

8
cos3’�1m;

(7)

where 1m � @��
#abc
4� n

a@xn
b@cn

c� � cyc:perm: is the mono-
pole charge density. Integrating 1m over a space-time
region surrounding the center of the monopole event gives
the change in the Skyrmion number between the two time-
slices before and after occurence of the event, i.e.,R
d�dxdy1m � *Qxy.
A spatially modulated pattern in the monopole Berry

phase [3,4] arises from this term in the following way. At
each lattice site there is a competition between spin mo-
mentum generation and a local Z4-valued VBS order.
While the bulk favors the former due to the presence of
Lanis, the latter emerges locally when a monopole happens
to be centered at that particular site. We may choose this
VBS core to be represented, e.g., at sublattice 1 in Fig. 1 by
the combination ’ � �

2 and 0 � 0, which implies, accord-
ing to Eq. (7), that S1BP � 1, with the superscript standing
for the sublattice index. We then go around the plaquette
counterclockwise as depicted in Fig. 2, which simul-
taneously rotates the orientation of the VBS order parame-
ter by 90 degrees increment. Noting that the orientation
of the ‘‘VBS clock’’ is specified by the angle 0	 ’, we
must correct for this by also incrementing 0 by 	 �

2
(while keeping ’ fixed) or 0 by �

2 (keeping ’ fixed).
Either way the Berry phase shifts by �

2 *Qxy. In this
way, we find that in order to have AFM monopoles with
VBS cores having the same orientation for all four sites
sharing the plaquette, we must have S2BP � ei�=2*Qxy ,
S3BP � ei�*Qxy , S4BP � ei3�=2*Qxy .

This method also applies to the case where the VBS state
is favored in the bulk, where one recovers the Berry phase
for the AFM core in the VBS vortex [7,26], 12 �	1�

ix�iy!,
where ! is the solid angle subtended by the spin. In
addition, the framework can be extended to make it appli-
cable for studying staggered flux states. In this sense, our
method is capable of ‘‘generating’’ a rich variety of spin
Berry phase effects.

In summary, we have shown that the �-flux state per-
turbed by competing AFM and VBS orders provides a
03640
natural framework for studying effective theories which
incorporate defects and their Berry phases in D � 2� 1
antiferromagnets. We have also demonstrated that the same
methods also offer a framework to explore exotic Berry
phases in D � 3� 1 spin systems as well.
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