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Spatiotemporal Optical Pulse Control Using Microwaves
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The Davey-Stewartson system allows us to describe the interaction between a spatiotemporal optical
pulse and adequately matched microwaves. We show that the interaction can lead to the formation of a
two-dimensional soliton which is robust in the sense that it occurs in a wide range of parameters of the
incident optical pulse and microwaves, and of the material used.
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FIG. 1 (color online). The matching conditions for the inter-
action. ~V1, ~V2, and ~V are the velocities of the plane waves at
microwave frequency and of the optical pulse, respectively. x
and y are the characteristic coordinates of the DS model.
It is well known that optical solitons in Kerr media are
unstable in more than (1� 1) dimensions. Saturating Kerr
nonlinearities or cascaded second-order ones have been
considered to stabilize multidimensional pulses, an issue
which is very important for applications in optical tele-
communications and integrated optics. Although many
advances have been made (see the review in [1]), the
experimental realization of stable spatiotemporal solitons
is still a challenge. We present here an alternative way of
producing such structures, and show that they are robust
enough, so that they are promising for experiment and
applications.

In a medium presenting second-order nonlinearities, far
from phase matching, the combined effect of optical rec-
tification and electro-optic effect can efficiently affect the
propagation of spatiotemporal optical pulses. It can, e.g.,
prevent the wave collapse [2]. It has been shown that the
equations relevant to describe the propagation of a (2� 1)-
dimensional optical pulse when these effects are not ne-
glected are of Davey-Stewartson (DS) type [3–6]. The DS
system is completely integrable by means of the inverse
scattering transform (IST) method for some particular
values of the coefficients [7]. The elliptic-hyperbolic
case, which requires anomalous dispersion, is referred to
as DS I. In this case, solitons, or rather ‘‘dromions,’’ can be
formed [8,9]. The integrable case corresponds to 2 equili-
briums: on one hand the cascaded second-order nonline-
arities must equilibrate the third order Kerr effect; on the
other hand, the dispersion has to be compared to the
difference between the group velocity of the pulse and
the speed of the rectified waves [10]. It has been proved
numerically, in the case of electromagnetic waves in fer-
romagnetic media [11], but also in optics [5], that pulse
stabilization was also possible in the general, nonintegrable
case.

In the frame of the DS system, dromion formation
requires nonzero boundary values at infinity for the auxil-
iary field, which describes the rectified field. This mathe-
matical feature has been interpreted as an interaction
between the pulse and solitary waves, whose length is
comparable to the size of the pulse [11]. One condition is
that the solitary waves travel slower than the pulse. In the
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optical case, numerical values can be obtained from pub-
lished experimental data [12]. For potassium dihydrogen
phosphate (KDP), e.g., the group velocity of the optical
pulse is vg�!� ’ 1:95� 108 ms�1, while the speed of the
solitary waves is c=n�0� ’ 0:65� 108 ms�1; for the lith-
ium niobate, we get: vg�!� ’ 1:2� 108 ms�1 and
c=n�0� ’ 0:5� 108ms�1. Thus pulse control through the
solitary waves should be possible [13]. However, dromion
formation requires a solitary wave with a single oscillation,
which is even not symmetric when the sign of the electric
field is changed. This is quite difficult to realize in the
microwave range. Therefore, we study in the present Letter
the interaction of a (2� 1)-dimensional optical pulse with
plane waves at microwave frequency, described by the DS
system. This situation is related to the formation of solitons
in periodic potentials [14], with two essential differences:
first the optical rectification considered in the present
2-1  2005 The American Physical Society
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FIG. 2 (color online). Stabilization of the pulse due to the
interaction: density plot in the plane x � y. Yellow lines indicate
the pulse diffraction and dispersion in the absence of input
microwaves. Parameters are: � � 1, � � 1, � � 1, b � �0:6,
c � 1, � � �1, Au � 3, ap � am � 4, A1 � A2 � 8, kx �
ky � 0, xc � yc � 0, Vx � Vy � 0.
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Letter yields a retroaction of the optical pulse to the
potential, which is completely absent from the other situ-
ation. Second, we deal here with a spatiotemporal problem,
while the periodic potentials considered in optics are usu-
ally purely spatial. Notice that, in such a 2-dimensional
optical lattice, a stable (3� 1)-dimensional optical soliton
can be formed [15].

An efficient interaction requires a velocity matching, as
shown in Fig. 1. The tips of vectors ~V1 and ~V2, velocities of
the plane waves at microwave frequency, lie on the circle
whose diameter goes from the origin to the tip of the vector
~V, velocity of the optical pulse. Therefore, in the frame

moving at the group velocity ~V of the optical pulse, the
velocities ~V1 and ~V2 are parallel to the corresponding
characteristic coordinates x and y, so that the plane waves
are stationary in this frame [11]. This way, the duration of
the interaction is very long, and it can be efficient even with
a weak nonlinear effect.

The DS system [3,10] is, in normalized units,
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where �, �, and � are normalized propagation distance,
transverse spatial coordinate, and time variable, respec-
tively. u is the envelope of the optical pulse and � the
rectified field. The constant � is related to the diffraction
and � to the dispersion. c is mainly the relative speed of the
microwaves with respect to light in the medium. � is a
nonlinear coefficient including the cubic Kerr nonlinearity
and the effective one due to the cascaded second harmonic
generation and back-conversion. b is a nonlinear coeffi-
cient accounting for electro-optic effect, while � corre-
sponds to optical rectification. See Refs. [4,10] for detailed
expressions of these coefficients in the case of real mate-
rials. The second equation in system (2) is hyperbolic. This
corresponds to the assumption that the speed of the micro-
waves in the medium is smaller than the speed of light,
necessary to obtain an efficient interaction, as seen above.
We assume further that � > 0, which corresponds to nor-
mal dispersion. In the integrable case, these two conditions
characterize the DS I system, for which dromions exist. We
suppose also that �< 0, so that the self-phase-modulation
is focusing both spatially and temporally. As it has been
shown in [11], the interaction can yield a soliton-type
propagation, at input powers below the threshold for self-
focusing. We show below that this stabilization can be
obtained using sinusoidal input microwaves instead of
one-hump solitary waves, which renders the phenomenon
achievable experimentally.

The DS system (1) and (2) is solved numerically using
the scheme given in [16]. It uses the characteristic coor-
dinates of the hyperbolic differential operator of the second
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equation (2): x � c�� � and y � c�� �. The figures
below are presented in this coordinate frame. We consider
a given initial condition u�� � 0; x; y� � u0�x; y�, and
boundary data

�1�x; �� � �1�c�� �; �� � lim
y���!�1

��x; y; ��; (3)

�2�y; �� � �2�c�� �; �� � lim
x���!�1

��x; y; ��: (4)

�1 and �2 can give account of the two incident plane
waves, propagating in such a direction that the interaction
is ‘‘resonant.’’ We consider sinusoidal waves, as

�1�x; �� � A1 sinkx�x� xc � Vx�� � B1; (5)

�2�y; �� � A2 sinky�y� yc � Vy�� � B2; (6)

as x or y tends to �1, that is, numerically, at the boundary
of the grid. Constants B1, B2 are defined so that � is
continuous on this boundary. The initial input for the light
pulse is the Gaussian

u0 � Au exp
�

�

�
x2

r2x
�
y2

r2y

��
: (7)

For certain values of the parameters, we observe the stabi-
lization, as shown on Fig. 2.

The question of the robustness of the obtained ‘‘driven
soliton’’ when the input parameters are changed then

arises. To discuss it, we define a pulse radius as r ������������������������������
h� ~x�<~x>�2i

p
, where hfi is the average value of f de-

fined by

hfi �

R
juj4fdxdyR
juj4dxdy

:
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FIG. 3 (color online). Dependence of the pulse radius r after a
propagation distance � � 0:4, with regard to (a) the phases xc,
yc, (b) the velocity mismatches Vx, Vy, (c) the wave numbers kx,
ky of the microwaves. The parameters which are not explicitly
specified on the figure are the same as in Fig. 2.
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FIG. 5 (color online). Dependence of the pulse radius r after a
propagation distance � � 0:4, with regard to (a) the initial radius
of the pulse rx or ry, (b) the pulse amplitude Au, (c) the
amplitude A1 � A2 of the microwaves. The parameters which
are not explicitly specified on the figure are the same as in Fig. 2.
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FIG. 4 (color online). Evolution of the spatial profile of the
pulse during the propagation for a velocity mismatch Vx � 4,
Vy � 0. The white lines show the displacement of the input
microwaves. Other parameters are as in Fig. 2.
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The exponent 4 is chosen to ensure that the integrals
converge fast enough so that their numerically computed
values do not depend on the size of the numerical box. The
radius r after a given evolution time is computed and
plotted against the parameters. Results are shown in
Figs. 3, 5, and 6.

Figure 3(a) shows the dependence of the pulse radius
with regard to the phase of the microwave. Stabilization
occurs when the pulse is located at the zeros of the micro-
waves, while defocusing occurs when it is located at the
maxima of amplitude. But the range in which stabilization
occurs is very wide, more than a half period. Figure 3(b)
shows the effect of a velocity mismatch. It is seen that
stabilization still occurs up to a rather large value of the
mismatch: Vx; Vy ’ 4 in normalized units. The velocity
mismatches in directions x and y operate independently
one from the other, as shows the comparison between the
two curves of Fig. 3(b), one corresponding to Vy � Vx,
while for the other curve, one of the velocity mismatches is
zero. The pulse is driven at the velocity of the microwave
pattern, as shown on Fig. 4. The range of the wave numbers
of the microwaves which yield the stability is shown in
Fig. 3(c). It is reasonably large.

Figure 5(a) shows the dependence of the pulse radius
with regard to the pulse width rx, for a fixed peak ampli-
tude, in two cases: ry � rx, then rx is the radius of the input
pulse, and ry fixed, then we obtain in fact the dependence
of the pulse radius with respect to the ellipticity of the
spatiotemporal shape of the pulse. It is seen that stabiliza-
tion occurs even with a rather important ellipticity. The
second decrease of the pulse radius can be interpreted as
the pulse collapse when its total energy exceeds some
threshold. The range of pulse radius for which stabilization
occurs is finite, but still reasonably large. The dependence
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of the pulse radius with regard to the pulse amplitude Au is
shown on Fig. 5(b). When the power is increased, the pulse
radius r oscillates during the propagation. This is respon-
sible for the oscillations of the curve Fig. 5(b). The range of
stabilization still appears on the plot; it is reasonably wide:
jAuj

2, which is proportional to the pulse energy, can go
from about 14 to about 50. For larger values of Au collapse
occurs. Figure 5(c) presents the dependence of r versus the
amplitude A1 � A2 of the microwaves. For small values of
the amplitude A1, diffraction and dispersion occur, as
shows the plot of the final value of r at the left of
Fig. 5(c). This gives a lower bound of the stabilization
range about A1 ’ 4. The behavior is different when the
amplitude of the microwaves is increased. The oscillations
become wider and wider, but no collapse nor spreading out
occurs. The range of stabilization cannot be found as easily
2-3
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FIG. 6 (color online). Dependence of the pulse radius r after a
propagation distance � � 0:4, with regard to (a) the dispersion
parameter � and (b) the self-phase-modulation parameter �. The
parameters which are not explicitly specified on the figure are the
same as in Fig. 2.
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as for the parameters considered above. To overcome this
difficulty, on the right part of Fig. 5(c), we represented the
maximal and minimal values of the pulse radius reached
during the oscillations versus the amplitude of the micro-
waves, and the radius rini of the input pulse. The value of
min�r� shows that no collapse occurs; it has been checked
that min�r� stays far enough above the discretization step.
The maximum max�r�, thus the amplitude of the oscilla-
tions, increases with the amplitude A1 � A2 of the micro-
waves. For A1 & 30, the maximal value max�r� is less than
rini; the oscillations tend to decrease during the propaga-
tion and the pulse can be considered as stabilized. For A1 *

30, the oscillations increase and the pulse is unstable.
The robustness of the soliton with regard to the variation

of the parameters of the DS system must also be examined.
The transform �0 � a�, �0 � a�=c, � 0 � �a2� , �0 �

a�=�, u0 � u, with a �
��������������������
b�=�b0��

p
reduces the DS sys-

tem (1) and (2) to the same system with coefficients �0 �
�0 � c0 � 1, b0 arbitrary, �0 � �=��c2�, and �0 �
�b0=�b��. Thus we can restrict our study to the coefficients
� and � without loss of generality. The dependence of the
pulse radius with regard to the dispersion coefficient � is
shown on Fig. 6(a). Spreading out occurs as � exceeds a
threshold value about 2, which gives an upper bound to the
stability range. In contrast, no lower bound appears. The
pulse radius r oscillates during the propagation, and as in
Fig. 5(c), we have plotted the maximal and minimal values
of r against �. As � decreases, the oscillations become
larger and larger, and min�r� smaller and smaller. However,
as far as the stability of the numerical scheme allows to
determine it, no collapse occurs, and the oscillations de-
crease during the propagation. Therefore, the pulse can be
03390
considered as stabilized at least down to � � 0:1, which is
the lowest value we were able to attain numerically.
Figure 6(b) shows the dependence of the pulse radius
with regard to the self-phase-modulation coefficient �. It
is seen that collapse occurs when � exceeds some thresh-
old, while the stabilization occurs for a wide range of
values of �, and still occurs as this parameter vanishes.
Thus stabilization can be achieved for a wide range of
values of the parameters � and �, which are the only
dimensionless parameters of the DS system. Therefore,
the physical parameters of a wider variety of material can
be expected to fall into the stabilization range.

In conclusion, we have seen that robust spatiotemporal
optical pulses can thus be formed and controlled by means
of adequately matched microwaves. The stabilization can
be achieved for a rather large range of parameters, regard-
ing as well the parameters of the medium, as that of the
incident microwaves and optical pulse. The robustness of
this phenomenon will render possible its experimental
realization, opening the door to applications.
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