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Here we present experimental realizations of two new entanglement detection methods: a three-
measurement Bell inequality inequivalent to the Clauser-Horne-Shimony-Holt inequality and a nonlinear
Bell-type inequality based on the negativity measure. In addition, we provide an experimental and
theoretical comparison between these new methods and several techniques already in use: the traditional
Clauser-Horne-Shimony-Holt inequality, the entanglement witness, and complete state tomography.
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A number of algorithms and protocols have been dis-
covered that exploit quantum mechanics in order to per-
form tasks which could not be accomplished classically.
These include significant improvements in computational
complexity for search [1] and factoring [2], advances in
cryptography [3], and teleportation of quantum states [4].
These and other protocols make use of the nonclassical
nature of the quantum world, epitomized by the phenome-
non of entanglement whereby distant systems can exhibit
perfectly random yet perfectly correlated behavior.
Entanglement has itself been identified as a fundamental
resource for quantum computation [5], and its quantifica-
tion and detection have been the subject of considerable
research. In this Letter we present an experimental and
theoretical comparison of five methods for entanglement
detection, including two which have never before been
experimentally realized.

Historically, a violation of Bell’s inequality provided the
first test for entanglement [6] by measuring a sequence of
correlations that could not be explained by any local real-
istic model. Last year, Collins and Gisin proposed a new
type of Bell inequality inequivalent to the traditional
Clauser-Horne-Shimony-Holt (CHSH) inequality [7] (in-
equivalency denotes states that violate one inequality but
not the other), requiring measurements in additional bases
[8]. While measuring a Bell violation detects entangle-
ment, it does not quantify it nor is it guaranteed to succeed.
State tomography [9], in contrast, provides a complete
description of a quantum state but requires measurements
in even more bases. It was later discovered that it was
possible to detect the existence of entanglement without
resorting to a violation of local realism. These ‘“‘entangle-
ment witnesses” [10] proved capable of detecting entan-
glement using fewer measurements than a tomography, but
did not always succeed, sometimes failing to detect a
legitimately entangled state. Last year, Yu et al. [11]
proposed an inequality similar to an entanglement witness,
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but based on a nonlinear combination of measurement
results; it detects every entangled state if the correct mea-
surements are chosen.

This Letter describes the preparation of a set of states
near the entangled-separable border in Hilbert space and
their measurement using the aforementioned entanglement
detection techniques. After describing the experimental
apparatus used to accomplish this, each of the above
detection methods is briefly discussed, followed by an
analysis of its experimental implementation. This is, to
our knowledge, the first experimental implementation of
the inequalities proposed by Collins et al. and Yu et al.,
hereafter referred to as the Geneva and Hefei inequalities,
respectively (so named for the cities from which they were
proposed). While analyzing each method, it is important to
consider the information the test provides (e.g., quantifica-
tion of entanglement, information about local realism,
complete state determination), how many distinct measure-
ment settings are required to perform the test (important if
changing bases is experimentally costly), and how the test
is affected by both statistical uncertainty and systematic
errors (statistical factors primarily determine the time nec-
essary to make a measurement). This Letter concludes with
a table quantifying the differences between these methods.

The experiments were carried out using pairs of
entangled photons, created via the spontaneous parametric
down-conversion of a 351 nm pump beam inside two
orthogonally oriented 0.6 mm B-barium borate (BBO)
crystals. The optic axes of these crystals were selected
such that a horizontal (H) pump beam produces pairs
of vertical (V') photons in the first crystal while a vertically
polarized pump beam produces pairs of horizontally
polarized pairs in the second crystal. Because the crystal
spacing and thickness are much shorter than the coherence
length of the pump, these processes are coherent, allowing
a pump with polarization cos(€)|V) + e sin(e)|H)
to produce the nonmaximally entangled state
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l(e, p))=cos(e)|[HH) + ¢'?sin(e)|VV) [12]. Additional
optical elements [see Fig. 1(a)] allow the creation of a
wide range of partially mixed, partially entangled states
[13].

The Bell inequality, first proposed in 1964 [6], provides
a limit on measurement correlations obtained by any local
realistic model. To measure this violation using probabil-
ities measured from separable projectors, we rewrite the
CHSH inequality using the convention of [8]:

PAlBl+PA231+PA|BZ_PA232_PA]_PB =0. (1)

1
Here P4, p, is defined as the probability that photons A and
B will be projected into states A; and B;, respectively. A
violation of the inequality indicates a lack of local realism
and the presence of entanglement [14].

If the Bell-type argument is extended to three-

measurement bases in each arm ({A, B}, = {A, B} 23),
it is possible to construct another inequality [8]:

PAIBI + PAZBI + PASBI + PAle + PAsz + PA133
_ZPB]_PBZSO. (2)
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FIG. 1. Experimental setup for the entanglement detection
methods discussed. (a) State creation. A 351 nm pump beam
down-converts inside two orthogonally oriented 0.6 mm BBO
crystals. These crystals are designed such that the superposed
down-conversion from both crystals produces the state
(e, ¢) = cos(e)|HH) + e'? sin(€)|VV), where € and ¢ are,
respectively, determined by the rotation of the e-HWP (half
wave plate) and the tilt of the ¢-QWP (quarter wave plate)
about its optic axis, oriented vertically. Specially designed
245 pm BBO plates compensate for any angular dependence
in the phase factor ¢’®. Two HWP’s transform this state into a
state with arbitrary diagonal values in the H/V basis. Finally,
two 1 cm decohering quartz crystals destroy all coherence terms
in the density matrix except for |[HH)YVV/| and |VV)YHH]| [19].
(b) Measurement. In each arm, a QWP-HWP-PBS (polarizing
beam splitter) combination allows projection into any single-
qubit basis. Silicon avalanche photodiodes and coincidence
electronics allow the results of separable, two-qubit measure-
ments to be recorded. (c) For some experiments, it is advanta-
geous to add an additional detector at each of the remaining PBS
ports, in order to collect not just the results of a single separable
projector, but an entire four-element basis measurement.

What is most interesting about this Geneva inequality is
that it is inequivalent to the CHSH inequality; there exist
states that violate the Geneva inequality but do not violate
the CHSH inequality and vice versa.

In order to experimentally show this difference, we
prepared a class of states which lie on the border of
violating the CHSH inequality, within a very small region
of Hilbert space. These states are of the form [§]

pcc(6) = Alg(6, 0)Xy(60, 0)| + (1 — MIHVXHVI]. (3)

For each state p.;(#), A is chosen such that the CHSH
violation of p;(6) is theoretically predicted to be exactly
equal to 0. These states range from pure to mixed and from
entangled to separable, and together exemplify the inequi-
valency between the Geneva and the CHSH inequalities
[see Fig. 2(a) for experimental results].

The primary advantage of either the CHSH or the
Geneva inequality is its function as a test of local realism.
Both require previous knowledge of the state in order to
choose measurement settings that maximize the value of
the inequalities. In the CHSH case, a simple analytic
proscription has been found [15]; for the Geneva inequal-
ity, we used a numerical search.

Note also that both inequalities require probabilities to
calculate a violation, but experimentally we measure co-
incidence rates. In order to transform coincidence rates into
probabilities, at least one complete basis is measured; by
summing the rates for a complete set of orthonormal
projectors we obtain an estimate of the intensity of incident
states, allowing us to transform any coincidence rate into a
probability. Probabilities involving only one projection
(e.g., Py4,) are reconstructed by summing other terms
(e.g., Py, g, + PAI,B§, where By can be any projector).

Our third detection method is the entanglement witness
[10]. An entanglement witness, denoted by W, is a
Hermitian nonpositive operator whose overlap with prod-
uct states is non-negative, i.e., for any separable state |« 3),
(aB|W|aB) = 0. Entanglement witnesses detect more
states than a Bell inequality (for each entangled two-qubit
state, there exists a witness that can detect its entanglement
[10]), using fewer measurements than a full tomography,
but requiring a witness suited for a given entangled state.
Here we construct a witness that is capable of detecting the
entanglement for all p;(0).

Consider the spectrum of the partial transposition [5,15]
pT* of the state pc;(#). Denote by A, (6) its minimum
eigenvalue and by |e,(6)) the corresponding eigenvector.
Since pcg(0) is entangled when 0 <6 < 7, Ay;,(6) is
negative in the same range [15] (the value of this eigen-
value is linearly related to the negativity). Moreover,
le,(6)) turns out to be independent of 6, so |e,(9)) =
le,). It follows that W = |e,)e,|™ is an entanglement
witness, with Tr[Wp] = 0 for all separable states and
less than zero for all p-(@). It is possible, using local
measurements, to estimate the value of Tr[Wp] [16].
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FIG. 2 (color online). Experimentally measured values for four
different entanglement detection methods, each applied to the
same set of states. These states were all of the form p;(6) [see
Eq. (3)]. In all cases the solid lines represent theoretical values
for ideal states, calculated numerically. In practice, the experi-
mental states deviated slightly from the exact form of pcg.
(They all maintained >99% fidelity with the target.) The error
bars indicate the state tomography’s 1 — o error region for these
experimentally created states, and so for outliers may fail to
bound the experimentally measured violations. (a) Measured
violations of the Geneva and CHSH inequalities, which are
manifestly inequivalent. pcs is intentionally constructed so
that the theoretical value of the CHSH violation is always
exactly zero. Both the CHSH and Geneva inequalities have
been renormalized so that O represents the border between a
violation and nonviolation. The renormalized range of the
Geneva inequality is —2 to 0.25 and the range of the CHSH
inequality is —1 to %J. (b) Experimentally measured values
for an entanglement witness based on the negativity. Negative
values indicate entanglement. (c) Experimentally measured val-
ues of the Hefei inequality, a nonlinear Bell-type inequality
based on the negativity. Because of the curves’ fundamental
similarity, the value of 2(c) is equal to 1 minus 4 times 2(b).

Figure 2(b) shows the results of this estimation, using the
states pcg(6).

While entanglement witnesses are based on the linear
overlap between a density matrix and an operator, it is
possible to construct nonlinear inequalities based on the
same types of measurements. Consider two sets of mutu-
ally complementary observables, {A;} and {B;}, having
identical orientation (A;A,A; = B;B,B3). The Hefei

Group proved [11] that a two-qubit state is separable if
and only if

VB + ABo)2 + (As + By)2 — (AsB3), =1 (4)

for all A;, B; where (O), = Ti[pO]. Moreover, the maxi-
mal value of the above inequality is equal to 1 — 4,
with A.;, equal to the minimal eigenvalue of the partial
transpose of the density matrix.

The results of the measurement of this Hefei inequal-
ity—which once again requires one to choose the correct
measurement bases to match the state—are shown in
Fig. 2(c). The y axis in Fig. 2(c) shows the value of the
violation: a value greater than one indicates entanglement,
and a value of three can be obtained only by a maximally
entangled state.

All four of the entanglement detection methods already
discussed share two disadvantages: they require previous
knowledge of the state to be effectively applied, and they
fail to quantify the amount of entanglement present. These
problems can be overcome by taking a complete quantum
state tomography (QST), which through a series of sepa-
rable measurements reconstructs the full density matrix.
While QST requires no prior knowledge of the state and
allows any of the above quantities to be derived from the
density matrix, it does not necessarily provide a test of
local realism [17] and it requires a minimum of 16 sepa-
rable measurement settings [9,18].

While 16 measurements are the minimum necessary for
QST, it is possible to instead use a set of 36 measurements
composed of nine complete bases. Surprisingly, the infor-
mation provided from these additional measurements is
sufficient to reduce the total time required for QST for a
given precision (using our experimental system) by as
much as a factor of 3. If, in addition, every two-qubit state
is projected into one of four orthogonal projectors, this can
be reduced by a further factor of 4, as only nine measure-
ments are necessary [see Fig. 1(c)].

This reduction in experimental time underscores two
distinct and often competing measures of an entanglement
detection method’s efficiency. The first is the number of
different measurements necessary, important because of
the time it takes to switch between measurements. For
our automated system, where different measurement set-
tings correspond to different wave plate orientations, this is
usually a minor factor. The second consideration is the
total number of state copies required—linearly related to
the total measurement time.

Table I shows the number of measurements and the total
number of state copies per measurement necessary to
accurately measure, using each method, four representative
two-qubit states: 1/4, pcg(Z), ly+) = %(lHH} + |VV)),

and |HH). The number of measurements were minimized
in each case, which for the 2-detector case leads to a far
larger necessary ensemble size, exemplified by the factor
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TABLE I. This table compares five different entanglement
detection methods using two different experimental configura-
tions. For each detection method, the second column (M#)
indicates the number of necessary measurement settings. Each
additional column shows, for each of four two-qubit states, the
minimum number of distinct two-qubit systems that need to be
used, per measurement, in order to attain a 1% statistical error.
Here, a =1% error is measured relative to the entire range of the
measured quantity. For example, the CHSH inequality ranges
from —1 to ~0.207, making a £1% error equal to a =0.01 X
1.207 error in the violation. The minimum state copies necessary
were numerically estimated using a Monte Carlo simulation of
the expected data, the results of which corresponded to analytic
estimates. The third through sixth columns, respectively, show
the state copies per measurement necessary for the states 1/4,
pcc(§), |HH), and |*) = %(IHH} + |VV)). (a) Results for a
single projector (2-detector) setup, where each two-qubit state is
measured using only a single separable two-qubit projector.
(b) Results for a full basis measurement (4-detector) setup,
where each two-qubit state is measured simultaneously by four
mutually orthogonal projectors [see Fig. 1(c)].

(a) Single projector/two detectors

Method M## 1/4 pcc@ Yt |HH)
CHSH 7 6300 4400 12400 200
Geneva 11 7000 5400 2600 200
Ent. witness 8 800 400 200 500
Hefei 8 12300 2500 400 200

Tomography” 16 23500 8800 900 900

(b) Four projectors/four detectors

Method M#  1/4 peg@m  yt |HH)
CHSH 4 3400 1000 2100 200
Geneva 8 2300 2200 1600 200
Ent. witness 3 800 400 200 500
Hefei 3 5500 1600 400 100
Tomography® 9 4000 1500 400 200

“Tomography returns a density matrix, from which the results of
each other test can all be derived. The tomography entries in this
chart show the minimum state copies necessary to attain a
density matrix precise enough to reduce the error on each of
these derived quantities to less than *=1%.

of 2.6 = ([8800 X 16]/[1500 X 9 X 4]) increase in neces-
sary state copies between 36 and 16 measurement, 2-
detector tomographies of p ().

These results are a numerical upper bound that is highly
dependent not only on the state to be measured, but the
particular measurement settings that are chosen (for any
given state there may be many equivalent ways to measure
a maximal violation). This is exemplified by the 2-detector
CHSH results for |¢"), which appear to be quite high, and
|HH), which are quite low. The maximally entangled state
requires very specific measurements, and leaves little free-
dom to optimize for low errors. The violation for |HH),
however, is theoretically zero, allowing measurement set-

tings to be chosen that are all orthogonal to |HH), all
resulting in probability zero, and all with low errors.

Comparing these five methods, we find that the CHSH
and Geneva inequalities are useful for performing tests of
local realism, the Hefei inequality and the entanglement
witness can be used to quickly bound A, and the tomog-
raphy appears to be the most attractive option in general;
each other method first requires a tomography to choose its
measurement settings—a tomography that can be used to
derive any information about a state. In the 4-detector case,
the tomography actually outperforms several other meth-
ods for entangled states, the states most likely to be mea-
sured using entanglement detection techniques.
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