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Hawking Radiation in an Electromagnetic Waveguide?
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It is demonstrated that the propagation of electromagnetic waves in an appropriately designed
waveguide is (for large wavelengths) analogous to that within a curved space-time—such as around a
black hole. As electromagnetic radiation (e.g., microwaves) can be controlled, amplified, and detected
(with present-day technology) much easier than sound, for example, we propose a setup for the
experimental verification of the Hawking effect. Apart from experimentally testing this striking pre-
diction, this would facilitate the investigation of the trans-Planckian problem.

DOI: 10.1103/PhysRevLett.95.031301

Introduction.—One of the major motivations behind the
idea of black hole analogues (‘“‘dumb holes,” see [1]) is the
possibility of an experimental verification of the Hawking
effect [2]. Apart from testing one of the most striking
theoretical predictions of quantum field theory under the
influence of external conditions, such an experiment would
enable us to investigate the impact of ultrahigh energy or
momentum degrees of freedom (trans-Planckian problem)
on the lowest-order Hawking effect and its higher-order
corrections (with respect to the small ratio of Hawking
temperature over Planck scale) by means of an analogue
system. In view of the close relation between the Hawking
effect and the concept of black hole entropy, these inves-
tigations are potentially relevant for the black hole infor-
mation paradox, etc.

The analogy between sound waves in moving fluids and
scalar fields in curved space-times established in [1] can (in
principle) be used to simulate a horizon in liquid Helium
[3] or in Bose-Einstein condensates [4], for example, (see
also [5]). However, measuring the Hawking effect in those
systems goes along with serious difficulties [6]. The main
problem is the detection of sound waves corresponding to
the realistically very low Hawking temperature.

On the other hand, electromagnetic radiation is much
easier to control, to amplify, and to detect with present-day
technology and one might hope to exploit this advantage.
Optical black hole analogues have been discussed for
highly dispersive media which support the phenomenon
of slow light [7] and for ordinary nondispersive dielectrics
[8]. However, it turns out that a horizon for slow light does
not emit Hawking radiation [9], whereas an experimental
realization by means of ordinary dielectrics is in principle
possible but very challenging. In the following, we shall
propose an alternative setup in order to circumvent this
difficulty.

Waveguide.—Let us consider the propagation of elec-
tromagnetic waves in the waveguide in Fig. 1. The capaci-
tances C are realized by the parallel conducting plates at
the bottom of each unit separated by insulating slabs with
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the dielectric permittivity & and thickness 6z. The induc-
tances L are generated by the remaining space of the
Ax X Ay X Az cells (magnetic permeability ) with the
enclosing walls also being conductors. For simplicity, and
in order to avoid leakage and transverse modes, etc., we
assume the following hierarchy of dimensions of the wave-
guide and the wavelength A of the propagating electromag-
netic waves:

Oz <K x K Ax~ Az Ay x A (1)

In this limit, the waveguide possesses a large slow down
and we can omit Maxwell’s supplement D in @rsted-
Ampere’s law VX H=j+ D, ie., gﬁdr -H =1+
% [dS - D, in the upper region of the waveguide (i.e.,
the surface integral over S = Ay X Az). The conditions
(1) also ensure that the energy of the waves is basically
confined to the waveguide.

Hence, the combination of @rsted-Ampere’s and
Faraday’s law VX E=—B, ie., fdr-E= —4 [dS-B,
gives the induction law AU = %Ll for the effective coils
with a possibly time-dependent inductance L(r) given by
L = nAxAz/Ay for a long coil Ay > Ax, Az. Denoting
the voltage impressed on the nth capacitor by U,, the

FIG. 1. Circuit diagram and sketch of the waveguide.
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above condition implies for the nth coil U, —U,=
%Lnln. By means of Gauss’ law V-D =g, i.e., §dS-D =
0, and the conditions (1), we obtain for the nth capacitor
Q0,=CU, with Q, denoting its charge and C, =
eAxAy/8z its possibly time-dependent capacitance. In
the following [10] we shall assume that all the inductances
are constant and equal (L,, = L = const) whereas the ca-
pacitances are generally time-dependent C,(¢). In analogy
to the electromagnetic field in vacuum, we may introduce
effective potentials A, which automatically satisfy the
induction law U, — U,, = %L,,In via

dA,
dt’
Then Kirchoff’s law %Qn = %CnUn =1I,— 1, (e,
charge conservation) implies the equation of motion

d d
dr "dt

Un =L In = An+l - An (2)

An = An+l - 2An + An*l- (3)

Effective geometry.—In the continuum limit (i.e., one
wavelength involves many units A >> Ax), the above equa-
tion of motion approaches the wave equation

a1 o o2
————JA=0, 4
<6t c? ot 8x2> @
with the space-time dependent velocity of propagation

= ﬂ = & <
VLC €nAz

If we arrange ¢?(t, x) according to

At x) = A(x + v), (6)

c Co- (5)

with a constant velocity v and transform into the comoving
frame (x — x + vt), the wave equation becomes

2
[<i+ui>i<i+vi>—a—}A=O. (7)
at ax)c*\ar  ax)  ax?
Unfortunately, in 1 + 1 dimensions, the Maxwell equa-
tions are trivial and the scalar field is conformally invari-
ant—which prevents the introduction of an effective
geometry (in 1 + 1 dimensions). On the other hand, the
waveguide is notreally 1 + 1 dimensional, the y dimension
just does not contribute due to A > Ay, see [11]. Taking
into account this “silent” y dimension, the above wave
equation allows for the identification of an effective metric
via A = 9, (/8err8hit 95A)/\/8ert = 0 in the 2 + 1 di-
mensional Painlevé-Gullstrand-Lemaitre form [12]

1 v 0
ghy = (v - 0 ) (8)
0 0 —c?

Hence, the propagation of electromagnetic waves within
the waveguide is equivalent to that in a curved space-time
as described by the above metric. Note that the scenario

under consideration is similar to the supersonic domain
wall discussed in [13].

As one would expect, the metric describes a horizon at
v? = ¢? with a surface gravity corresponding to the gra-
dient of the propagation velocity ¢ (since v = const) and,

therefore, a Hawking temperature of
T _h dc
Hawking 2ar kB ox

(€))

v2=c?

As demonstrated in [9], the (classical) wave equation is not
enough for the prediction of Hawking radiation—the
(quantum) commutation relations have to match as well.
If we start from the effective action of the waveguide

1
9[eff = /dtZE(CnUﬁ - Lnlﬁ)

_ LA dtdx<12[%f - [%D, (10)
c”| ot dx

and perform the usual canonical quantization procedure,

we indeed obtain the correct commutation relations for the

Hawking effect—i.e., the conversion of the zero-point

oscillations (with energy hw/2) to real photons by the

external conditions C,(z).

Switching.—In the following we present a microscopic
model for the controlled change of the capacitances C,(7).
Let us consider an insulating material such as a semicon-
ductor at very low temperatures whose dielectric properties
are mainly governed by a large number of independent
localized electrons (say, one per lattice site) which can be
described in terms of their three lowest levels a, b, and ¢. In
the usual rotating wave and dipole approximation, the
dynamics of the corresponding single-particle amplitudes
Y., ¥y, and ¢, is determined by the effective Lagrangian

Lrwa = i, + iy, + ik, — Aogiy,
+ [ED Y. + QO + Hel  (11)

Here Aw = w, — w;, > 0 denotes the energy difference
between the excited states ¢ and b and the associated
dipole moment « describes the coupling to a small and
slow electric test field £(r). The ground state a is supposed
to be strongly localized (small dipole moment) and hence
does not couple significantly to £(f)—whereas the states b
and c are delocalized and thus do couple to £(¢). However,
the ground state a couples to a fast and strong Laser field
tuned to the frequency of transition from the ground state a
to the first excited state b (but neither from b to ¢ nor from
a to ¢) with the Rabi frequency Q(z).

Since the test field £(r), and thus the induced disturbance
.., are small (linear response . < i, ¢;,), the dynamics
for ¢, and ¢, decouple and depend on ()(¢) only, i.e., we
may control the occupation amplitudes ¢, and ¢, by
means of the external laser beam. Furthermore, in the
adiabatic regime, where the rate of change of £ and ()
are much smaller than Aw, we can integrate out (i.e.,
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average over) the microscopic degrees of freedom ¢, . in
the Lagrangian in Eq. (11) arriving at the contribution to
the effective Lagrangian for the test field £(7)

2
Lr = (0P - E20) (12)

Obviously, this corresponds to a varying dielectric [14]
permittivity e(¢) and thus capacitance C,(r) which can be
controlled (nonlinear optics) by the laser field, i.e., its Rabi
frequency (7). Note that, in contrast to resonant phe-
nomena such as electromagnetically induced transparency,
this effective Lagrangian is valid for all adiabatic frequen-
cies (i.e., far below Aw). In the adiabatic limit, the above
effect is equivalent to the quadratic Stark shift (since there
is no degeneracy) in stationary perturbation theory. For
nonadiabatic frequencies, one must replace Aw by the
detuning between the frequency of the test field £(7) and
the b < ¢ transition frequency. Assuming one electron
(i.e., three-level system) per lattice site with a dipole mo-
ment « corresponding to a length scale of order of the
lattice spacing (a few Angstroms), a near-optical energy
gap of order O(1 eV) = O(10" Hz) would satisfy the
adiabaticity condition with 0 =~ O(10'° Hz), cf. [15], and
still generate a large dielectric permittivity &.

Discussion.—As we have observed in the previous con-
siderations, it is possible (under the assumptions and ap-
proximations made) to increase the capacitances in a
controlled way by shining a laser beam on the material —
ideally without generating dissipation and noise, etc. The
small residual energy absorbed in any real material (due to
impurities, etc.) creating high-frequency phonons, for ex-
ample, must be carried away by cooling the waveguide
before it may get converted into low-frequency electro-
magnetic waves traveling along the waveguide.

Note that a decoherence-free modulation of &(#) requires
the dipole moment for the transition a < b to be small and
the laser beam to contain a large number of photons—such
that it can be described classically as an external field, i.e.,
stimulated emission/absorption only. In contrast, the spon-
taneous decay back to ground state a is potentially asso-
ciated with dissipation, noise and decoherence—and
hence the lifetime of the excited state b should be much
longer than all other time scales relevant for the effective
geometry.

Fortunately, one can simulate a black hole horizon (¢
decreases < & increases) by illuminating the material in its
ground state a. The white hole horizon occurs at the
transition back to the ground state a and one has to make
sure that the two horizons are far apart such that the noise
generated by the white hole horizon does not propagate to
the black hole horizon and prevent the detection of the
Hawking radiation. The dispersion relation following from
Eq. (3) reads (for k, = 0 [11])

s 4 o rkAx\ 5, Axt o,

w LCsm( 5 ) ck 12Lck, (13)
and thus the group and phase velocities are (for moderate
frequencies [16]) less or equal to ¢> = Ax?/(LC); i.e., we
have a subluminal dispersion relation—which is typical
for a lattice. As a result, disturbances from the white hole
horizon (with moderate frequencies) cannot propagate to
the black hole horizon.

In order to answer the main question of whether it will
be possible to actually measure the Hawking effect, one
has to estimate the Hawking temperature. According to
Eq. (9) the Hawking temperature is basically determined
by the characteristic time scale on which ¢ changes. For
our microscopic model, this switching time is related to the
Rabi frequency (2, which must be much smaller than the
optical or near-optical frequencies of the three-level sys-
tem such as Aw for the rotating wave approximation to
apply. Nevertheless, with strong laser pulses, it is possible
to pump a large number of electrons in a semiconductor
from the ground state into an excited state in 10-100
picoseconds—whereas the (spontaneous) decay back to
the ground state can be much slower [15]. In this case,
the order of magnitude of the Hawking temperature could
be 10-100 mK, which is a really promising value since
there already exist amplifiers and detectors (for micro-
waves) with a noise temperature of order 10 mK, see,
e.g., [17]. Of course, one should cool down the apparatus
below that temperature.

One advantage of the present proposal is that it allows
for large velocities, say cy/10 — ¢;/100 (in contrast to
Bose-Einstein condensates [4], for example, with a sound
speed of order mm/s). Furthermore, there are no walls in
relative motion with respect to the medium, which could
lead to the Miles [18] instability (via momentum transfer).
With the above values, the thermal wavelength of the
Hawking radiation would be of order millimeter—hence
the minimum size Ax representing the analogue of the
Planck length (knee wavelength) should be smaller than
that. Consequently, the laser would have to illuminate a
slab with a thickness way below 1 mm.

The power of the radiation can be inferred from the (1 +
1 dimensional) energy-momentum tensor (in the comoving
frame)

dE

dt
where we can get an order of magnitude between 10~ !4 and
1071 W, which vastly exceeds the threshold in [17]. The
above expression yields the energy flux measured by a
detector at a large and constant distance to the horizon,
which corresponds to a comoving detector with respect to
laboratory coordinates. A detector sitting at the far end of
the waveguide (i.e., at rest with respect to the laboratory)
would correspond to an in-falling observer far away, and
thus see the Hawking radiation Doppler shifted, such that

a
= T(; = ﬁ(kBTHawking)zx (14)
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the created power in the laboratory frame is even larger, see
also [13]. (Close to the horizon, on the other hand, the
response of the comoving detector would diverge, whereas
the in-falling observer cannot detect anything special since
the available observation time is too short.)

The 1 + 1 dimensional character of the above expres-
sion reflects the fact that we have excluded transverse
modes via assumption (1). With appropriate generaliza-
tions (e.g., A3 Ay), we could also reproduce higher (e.g.,
2 + 1) dimensional behavior [11]. There are basically two
major possibilities for the geometry of the setup—a line or
a circle. In both cases one may accumulate energy over
some time by building a very long line (e.g., as a spiral) or
using many revolutions in the circle. In the latter scenario,
however, the problem of how to deal with the white hole
horizon has to be solved.

The control of the space-time dependence of c¢(z, x) can
be achieved actively or passively: An active control could
be realized via sweeping the laser beam externally (e.g.,
shining through holes in the lower capacitor plate), for
example. Alternatively (passive control), one could ar-
range optical fibers filling the capacitors—either wound
up around the capacitor plates or aligned along the wave-
guide—in a way such that the linear or nonlinear (e.g.,
self-focusing) optical pulse propagation exactly generates
the desired behavior c(z, x).

The Hawking effect could be measured by connecting an
amplifying circuit (e.g., field effect transistors) to the end
of the waveguide (an alternative method would be a bo-
lometer) subject to impedance matching—which can be
achieved by manipulating u/e, for example. In case the
measurement is not fast enough, that amplifier should be
disconnected (switched off) before the arrival of the hori-
zon—inducing additional noise, etc., The thermal spec-
trum of the Hawking radiation could be determined with
successive band passes.

In summary, the present proposal for an experimental
verification of the Hawking effect (in black hole ana-
logues) appears to be just at the edge of the present
experimental capabilities—but not far beyond them (as
is some other scenarios).
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