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We demonstrate the possibility to perform distributed quantum computing using only single-photon
sources (atom-cavity-like systems), linear optics, and photon detectors. The qubits are encoded in stable
ground states of the sources. To implement a universal two-qubit gate, two photons should be generated
simultaneously and pass through a linear optics network, where a measurement is performed on them.
Gate operations can be repeated until a success is heralded without destroying the qubits at any stage of
the operation. In contrast with other schemes, this does not require explicit qubit-qubit interactions,
a priori entangled ancillas, nor the feeding of photons into photon sources.
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Generically, the construction of universal two-qubit
gates for quantum computation can be classified under
two main groups. The first group involves the realization
of entangling gates with the help of coherently controlled
explicit qubit-qubit interactions. Examples of such
schemes are universal quantum gates using nuclear mag-
netic resonance techniques [1] and linear ion traps [2,3]. In
the second group, the qubit-qubit interactions are, at least
partially, replaced by measurements. Universal two-qubit
gates are obtained using ancillary qubits and by performing
appropriate measurements after the system had undergone
a unitary time evolution.

One of the most famous examples for measurement
based quantum computing is the one-way quantum com-
puter by Raussendorf and Briegel [4], where a highly
entangled cluster state is used as a resource. Another one
is the Knill-Laflamme-Milburn proposal for linear optics
[5], where many photons pass through a linear optics net-
work and measurements are performed on some of the
output ports of the setup. With a certain probability, the
remaining final state differs from the input only by the
desired gate operation. However, if the measurement does
not yield a certain result, the photons no longer contain the
information initially stored in the qubits. In this case, the
gate operation has failed and the whole computation has to
be repeated.

Other measurement based quantum computing schemes
employ certain features of matter-photon interactions.
They can provide, in principle, arbitrary high success rates,
but are experimentally much more demanding. Examples
are the cavity photon-assisted gates between atomic qubits
based on an environment-induced quantum Zeno effect
[6,7], the ion-photon mapping scheme by Duan et al. [8],
and the universal photon gate using atom-doped optical
fibers by Franson et al. [9]. Simplifying experimental
setups and increasing robustness and scalability of quan-
tum computing architectures are among the many motiva-
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tions for using measurements to process quantum
information.

In this Letter we propose an alternative use of measure-
ments, which is especially advantageous for distributed
quantum computing [10,11]. Distributed quantum comput-
ing aims at performing arbitrary computational tasks be-
tween the unknown quantum states of the distant nodes of a
large network. In the following, we assume that these
nodes are formed by sources for the generation of single
photons on demand (atom-cavity-like systems) [12,13],
which encode the logical qubits. We show that the imple-
mentation of the universal two-qubit phase gate

UCZ � diag�1; 1; 1;�1� (1)

requires only the generation of two photons. These are then
passed through a linear optics network and absorbed in a
photon pair measurement process. The proposed gate can
be operated repeatedly until success without destroying the
qubits at any stage of the computation. It is therefore
possible to perform each gate operation in an eventually
deterministic fashion, which is important for scalability.
The generic final state is the desired output, if the mea-
surement is deemed a success, or a new state, from which
the original input state can be recovered easily by local
operations.

In contrast to previous measurement based schemes
between distant photon sources [14,15], we propose a
scheme where the gate success probability can in principle
be as high as 100%. Moreover, we do not require local two-
qubit gates between two trapped ions or atoms as is the
case in Refs. [8,16]. Compared to nonmeasurement based
schemes for distributed quantum computing [17,18], we do
not require feeding of photons into a cavity. We also avoid
the use of a priori entangled ancillas as a resource [4,19].

Repeat-until-success quantum computing combines the
advantages of quantum computing with stationary qubits
(the single-photon sources) and flying qubits (free-
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propagating single-photon qubits). On one hand, the con-
sidered setup provides good quantum memory due to the
long decoherence times of the inner ground states of the
stationary qubits. It is also relatively easy to implement
single qubit rotations and to read out information with a
very high precision. On the other hand, the use of flying
qubits allows for a robust communication between arbi-
trary nodes of the network. At the same time, we avoid
vulnerability to decoherence by avoiding the coherent
control of explicit qubit-qubit interactions and the finite
gate success rates of purely linear optics based quantum
computing schemes.

A possible level configuration of the required atom-
cavity-like single-photon source is shown in Fig. 1. The
presence of one atom allows for the generation of one
photon at the time while the cavity fixes its direction.
The two atomic ground states j0i and j1i encode one
logical qubit. Photons should be generated such that an
arbitrary single qubit state transforms according to

j ini � �j0i � �j1i ���! j enci � �j0;Ei � �j1;Li: (2)

Here jEi and jLi denote the states of a single photon
generated at an early and a late time, respectively. One
way to implement the encoding (2) is to first swap the
atomic states j0i and j1i. Then a laser pulse with increasing
Rabi frequency should excite the 1-e transition (see Fig. 1).
This transfers the atom into the state jui and places one
excitation into the field of the strongly coupled optical
cavity, if the atom was initially prepared in j0i. The photon
then leaks out through the outcoupling mirror of the reso-
nator [12]. The encoding operation (2), which is feasible
with present technology [20], is completed by transferring
jui back into j1i, swapping again the states j0i and j1i and
repeating the above described photon generation process.
The final state j enci contains the initial qubit in the state of
the source as well as in the state of the newly generated
photon.

Suppose the two photon sources involved in a gate
operation are initially prepared in the arbitrary state

j ini � �j00i � �j01i � �j10i � 
j11i: (3)

The state of the system then equals after performing the
encoding (2) for each photon source
photon
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FIG. 1 (color online). Schematic view of a single-photon
source and level configuration of the atomic structure containing
the qubit.
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j enci��j00;EEi��j01;ELi��j10;LEi�
j11;LLi:

(4)

Since both qubits are redundantly encoded, a gate opera-
tion can be realized by performing a measurement on the
photons. An important requirement for this to work is to
choose the measurement basis such that none of the pos-
sible outcomes reveals any information about the coeffi-
cients �, �, �, and 
. In fact, such bases exist and are
known as mutually unbiased bases with respect to the
computational basis formed by the states jEEi, jELi,
jLEi, and jLLi [21]. Each mutually unbiased basis vector
is of the form

j
i �
1

2
�jEEi � ei’1 jELi � ei’2 jLEi � ei’3 jLLi�: (5)

Its detection, combined with an absorption of the photon
pair, projects the state (4) onto

j fini � �j00i � �e�i’1 j01i � �e�i’2 j10i � 
e�i’3 j11i;

(6)

which differs from the initial state (3) only by the unitary
operation

Uphase � diag�1; e�i’1 ; e�i’2 ; e�i’3�: (7)

Whenever ’3 � ’1 � ’2, the measured outcome (5) is a
product state and its detection imposes local operations
onto the initial state (3). However, when ’3 � ’1 � ’2 �
�, the photons are detected in a maximally entangled state
and the operationUphase differs from the desired entangling
gate (1) only by local operations [14].

Linear optics does not allow for complete Bell measure-
ments with unit efficiency [22]. Instead, we consider in the
following a measurement basis, which distinguishes two
maximally entangled states and two product states of the
general form

j
11;2i 	
1���
2

p �jx1y2i � jy1x2i�; j
3i 	 jx1x2i;

j
4i 	 jy1y2i:

(8)

Here jxii and jyii are two orthogonal states describing a
single photon produced by source i. One way to ensure that
the basis states j
ii are mutually unbiased [see Eq. (5)] is
to choose them such that

jx1i �
1���
2

p �jEi � jLi�; jy1i �
1���
2

p �jEi � jLi�;

jx2i �
1���
2

p �jEi � jLi�; jy2i �
1���
2

p i�jEi � jLi�;

(9)

since this definition implies
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FIG. 2 (color online). Linear optics networks for the realiza-
tion of a measurement of the basis states (10) after encoding the
photonic qubits in the polarization degrees of two photons (a) or
into four different spatial photon modes (b) involving either a
beam splitter (BS) or a 4� 4 Bell multiport beam splitter.
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j
1;2i � �
1

2
e�i�=4�jEEi � ijELi � ijLEi � jLLi�;

j
3i �
1

2
�jEEi � jELi � jLEi � jLLi�;

j
4i �
1

2
i�jEEi � jELi � jLEi � jLLi�: (10)

If we express the photon states in this basis, the encoded
two-qubit state (4) becomes

j enci �
1

2

X4
i�1

j iij
ii (11)

with

j 1i � e�i�=4Z1

�
1

2
�
�
Z2

�
�
1

2
�
�
UCZj ini;

j 2i � �ei�=4Z1

�
�
1

2
�
�
Z2

�
1

2
�
�
UCZj ini;

j 3i � j ini; j 4i � �iZ1���Z2���j ini;

(12)

where Zi�’� � diag�1; e�i’� denotes a state dependent
single qubit operation on atom i.

Eqs. (11) and (12) show that the controlled phase gate
(1) can indeed be implemented via a measurement of the
states j
ii. Each measurement outcome occurs with proba-
bility 1

4 . The detection of the maximally entangled states
j
1i or j
2i results in the implementation of the desired
operation up to local phase gates. Finding the photon pairs
in j
3i and j
4i yields the initial state (3) and the initial
state (3) up to a local conditional sign flip on both qubits,
respectively. On average, the completion of the gate (1)
requires two repetitions of the above described process.

Finally, we describe two possible experimental realiza-
tions of the photon pair measurement (10) with linear
optics. One possibility is to translate the time-bin encoding
into a polarization encoding, such that an early photon
becomes a horizontally polarized one (jEi ! jhi) and a
late photon becomes a vertically polarized one (jLi ! jvi).
It is well known that sending two polarization encoded
photons through the different input ports of a 50:50 beam
splitter together with polarization sensitive measurements
in the jhi=jvi basis in the output ports would result in a
measurement of the states 1��

2
p �jhvi � jvhi�, jhhi, and jvvi.

To measure the states (8), we therefore propose to proceed
as shown in Fig. 2(a) and to perform the mapping Ui �
jhihxij � jvihyij on the photon coming from source i.
Using Eq. (9), we see that this corresponds to the single
qubit rotations

U1 �
1���
2

p �jhi�hhj � hvj� � jvi�hhj � hvj��;

U2 �
1���
2

p �jhi�hhj � hvj� � ijvi�hhj � hvj��:

(13)

After leaving the beam splitter, the photons should be
detected in the jhi=jvi basis. Finding two photons of differ-
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ent polarization in the same (different) detectors corre-
sponds to a detection of j
1i (j
2i). A detection of two
h (v) polarized photons indicates a measurement of j
3i
(j
4i).

Alternatively, one can redirect the generated photons to
the different input ports of a 4� 4 Bell multiport beam
splitter as shown in Fig. 2(b). If ayn (byn ) denotes the
creation operator for a photon in input (output) port n,
the effect of the multiport can be summarized as [23]

ayn !
X
m

Umnb
y
m with Unm �

1

2
i�n�1��m�1�: (14)

A Bell multiport redirects each incoming photon with
equal probability to any of the possible output ports and
can therefore be used to erase the which-way information
of the incoming photons. One way to measure in the
mutually unbiased basis (10) is to direct an early (late)
photon from source 1 to input port 1 (3) and to direct an
early (late) photon from source 2 to input port 2 (4). If jvaci
denotes the state with no photons in the setup, this results in
the conversion jEEi ! ay1a

y
2 jvaci, jELi ! ay1a

y
4 jvaci,

jLEi ! ay2a
y
3 jvaci, and jLLi ! ay3a

y
4 jvaci. This conver-

sion should be realized such that the photons enter the
multiport at the same time. Using Eq. (14) one can show
that the network transfers the basis states (10) as

j
1i!
1���
2

p �by1b
y
4 �b

y
2b

y
3 �jvaci;

j
2i!�
1���
2

p �by1b
y
2 �b

y
3b

y
4 �jvaci;

j
3i!
1

2
�by21 �by23 �jvaci; j
4i!�

1

2
�by22 �by24 �jvaci:

(15)

Finally, detectors measure the presence of photons in each
of the possible output ports. The detection of a photon in
ports 1 and 4 or in 2 and 3 indicates a measurement of the
state j
1i, while a photon in the ports 1 and 2 or in 3 and 4
indicates the state j
2i. The detection of two photons in
the same output port, namely, in 1 or 3 and in 2 or 4,
corresponds to a measurement of the state j
3i and j
4i,
respectively.
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In summary, we introduced the idea of repeat-until-
success quantum computing based on an unusual choice
of measurement basis. As long as the logical qubits can be
redundantly encoded onto auxiliary particles, like the
states of newly generated photons, the ability to perform
partial Bell measurements is sufficient to implement an
eventually deterministic universal two-qubit gate. If the
measurement does not immediately result in the desired
gate operation, the initial qubits can be restored using only
single qubit rotations. The whole process can therefore be
repeated until it results finally in the completion of the
quantum gate.

As a concrete example we described a scheme for dis-
tributed quantum computing, which allows the realization
of arbitrary computational tasks on the unknown quantum
states of the distant nodes of a network. Each node consists
of a single-photon source like a trapped atom, a nitrogen-
vacancy color center, or a quantum dot placed inside an
optical cavity, an optical fiber, or in front of a large lens. It
can even consist of an atomic ensemble as in the experi-
ment by Matsukevich and Kuzmich [24]. The basic idea of
using mutually unbiased basis measurements for quantum
computing, which we presented here, works for any type of
encoding and a variety of systems. Here we chose to use
time-bin encoded single photons, since their generation
can be done with a relatively simple level structure (see
Fig. 1). Alternatively, one could also use polarization
encoding [25]and the measurement shown in Fig. 2(a),
which is interferometrically robust. It is also possible to
use frequency encoding when converting afterwards, for
example, to spatial encoding and measuring the photons
with the setup shown Fig. 2(b).

We believe that the described setup is feasible with
present technology, since all its basic components have
already been demonstrated experimentally. For example,
Legero et al. [26] observed the Hong-Ou-Mandel effect for
photons generated from an atom-cavity system, which is
the basic mechanism of the above described partial Bell
measurements. Blinov et al. [27] observed entanglement
between a trapped atom and a single photon of the type
described in Eq. (2).

Finally, high-fidelity distributed cluster state [28] can be
constructed efficiently with repeat-until-success architec-
ture. Our scheme, combining the advantages of stationary
and flying qubits, hence offer new perspectives in the
implementation of quantum information processing.
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