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A cavity coupling, a charged nanodot, and a fiber can act as a quantum interface, through which a
stationary spin qubit and a flying photon qubit can be interconverted via a cavity-assisted Raman process.
This Raman process can be made to generate or annihilate an arbitrarily shaped single-photon wave
packet by pulse shaping the controlling laser field. This quantum interface forms the basis for many
essential functions of a quantum network, including sending, receiving, transferring, swapping, and
entangling qubits at distributed quantum nodes as well as a deterministic source and an efficient detector
of a single-photon wave packet with arbitrarily specified shape and average photon number. Numerical
study of errors from noise and system parameters on the operations shows high fidelity and robust

tolerance.
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Quantum networks composed of local nodes and quan-
tum channels are essential for quantum communication
and desirable for scalable and distributed quantum compu-
tation [1,2]. Spins in quantum dots [3] or stable levels of
atoms or ions [4,5] are good candidates for stationary
qubits which can be locally stored and manipulated [6—
8]. Photons in optical fibers or waveguides are ideal flying
qubits for carrying quantum information between the local
nodes. A quantum interface interconverting local and fly-
ing qubits is the key component of the quantum network. A
recent experiment demonstrating entanglement between
photon polarizations and states in an atom [9] represents
a breakthrough in this direction. Another milestone toward
quantum networks is the proposal of Cirac et al. based on
cavity-assisted Raman processes [10], which employs
time-symmetrical carrier pulses and mutually time-
reversed operations at two nodes to transfer a qubit state
from one node to another.

This Letter proposes a general control scheme of a spin-
photon quantum interface, of which the time symmetric
scheme of [10] and the adiabatic scheme of [11] form
special and approximate cases. It also presents the opera-
tion and error analyses of a semiconductor quantum dot—
waveguide interface coupled by a cavity, a basis for a solid-
state quantum network.

We note that the state-transfer process proposed in
Ref. [10] can be separated into two steps: the sending
operation at one node which maps a stationary qubit into
a flying qubit by the evolution [C,|g) + C,|e)] ® |vac) —
lg) ® [C,lvac) + C,|a(1))] and the receiving operation at
another node which maps the flying qubit into a stationary
one, where |g) and |e) are the stationary qubit states and the
flying qubit is represented by the vacuum state |vac) and a
single-photon state with wave packet «(r). We will show
that both the sending and receiving processes can be inde-
pendently controlled by shaping the laser pulses. Two
aspects of the process are controllable: the production of
an arbitrarily shaped pulse provided that it is sufficiently
smooth and the operation of the Raman process as a partial
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cycle, in which the initial state |¢) ® |vac) is mapped into
an entangled state cosf|e) ® |vac) + sinf|g) ® |a(t)) for
any 6 € [0, 7/2].

With such controllability in hand, this quantum interface
can accomplish many essential functions of a quantum
network: (i) It can send a flying quantum state and can
also function as a deterministic source of single photons
with arbitrary pulse shape and controllable photon number.
(i1) It can receive a flying quantum state, being an efficient
single-photon detector provided that the incoming photon
pulse shape is known. (iii) The sending and receiving
processes combined transfer a state from one node to
another. (iv) An incoming flying qubit may be swapped
with a stationary qubit which enables the swap of two
remote qubits. (v) An entangled state of the stationary
and flying qubits is produced in a partial Raman cycle.
(vi) Two stationary qubits separated by a large distance are
entangled when the photon state generated by the partial
Raman cycle is mapped into a stationary qubit. The ex-
tension to a network of these nodes connecting small
optical computers of spin qubits in dots [6—8] is straight-
forward and will be published later.

The basis for the physical implementation of our pro-
posal of a node is formed by a substantial list of recent
experimental advances on optical manipulation of excitons
in single nanodots [12], nanodot-microsphere coupling
[13], cavity-fiber coupling [14], fabrication of high-quality
microcavities and waveguides, both on semiconductor sur-
faces [14] and in photonic crystals [15,16], and especially
the very recent findings of vacuum Rabi splitting of nano-
dots embedded in such cavities [17,18]. The duration of a
typical operation in the node is shown below to be of the
order 100 ps, consistent with the theoretical estimates of
optical operations on spin qubits in dots for network pur-
poses. The speed and pulse shaping may well be within the
capability of the existing ultrafast optics.

The prototype quantum interface is made up of a high-Q
microcavity coupling, a quantum dot, and a waveguide
(e.g., a fiber), such as is shown in Fig. 1(a). Lowering of
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the Q of the cavity due to the strong coupling with the
waveguide is part of the process and has no deleterious
effect on the quantum operation. The detailed optical
process is depicted in Fig. 1(b). The qubit is represented
by the two spin states |g) and |e) which have split energies
w, and w, in a static magnetic field normal to the optical
axis of the dot. The lowest two optically excited states are
two spin states of a heavy hole plus a singlet of two
electrons, known as trion states |¢) and |7), with energies
w, and w; respectively. The linear optical polarizations are
chosen [19] such that the cavity mode of frequency w,
couples with strength g.,, only to the transitions |g) — |¢)
and |e) — |7), and the controlling laser of central frequency
w;, and complex Rabi frequency €)(f) couples only to the
cross transitions |g) — |7) and |e) — [£). The laser light and
cavity mode satisfy the resonance condition: w; + w, =
0, + v, = w,. By the Zeeman splitting and the selection
rules, the trion state |7) is off resonant to the laser light and
the cavity mode (shown by dashed lines in the figure). The
cavity mode is coupled to the waveguide continuum by the
coupling constant «.

At a sending node, the Raman process consists in first
the laser field resonantly exciting the spin state |e, 0) to the
trion state |z, 0), then the trion state resonantly coupled to
the cavity state |g, 1), which finally is rotated to the spin
state |g, 0) forming a photon wave packet in the waveguide.
The receiving node is just the time-reversed process.
Undesirable dynamics involving the state |7) is eliminated
by making the Zeeman splitting sufficiently larger than the
cavity-dot coupling and the Rabi frequency. The resultant
optical process is the cavity-assisted resonant Raman pro-
cess in a A-type three-level system shown in Fig. 1(c).
Then for any shape of the single-photon wave packet in the
waveguide, an analytical solution of the pulse shape of the
laser field may be found. With this analytically obtained

(@) 1B« (b)
A
S

£

—_ =)

©r o m F

e,0>

5.0)

FIG. 1. (a) A high-Q microsphere coupling, a “‘tapered‘
waveguide, and a doped quantum dot. (b) The level diagram
and optical process. In |s, n), s = g, e, t, or 7 denotes an elec-
tronic state in the dot and n denotes the number of photons in the
single cavity mode. Straight, curved, and wavy arrows represent
the laser excitation, dot-cavity coupling, and cavity-fiber tunnel-
ing, respectively. The resonant and off-resonant processes are
represented by solid and dashed lines, respectively. (c) The
simplified cavity-assisted Raman process.

laser pulse shape as the controlling input, numerical cal-
culations including the nonresonant transitions and realis-
tic decoherence have been performed and high fidelity of
desired operations at the quantum interface is
demonstrated.

We first present the analytical solution of the laser pulse
for the controlled Raman transition converting a spin qubit
state [C,|g, 0) + C.|e, 0)] ® |vac) to a flying photon state
lg, 0) ® [C,|vac) + C,|a(r))]. Throughout the optical pro-
cess in the simplified system in Fig. 1(c), the state
|g, 0)|vac) does not mix with the subspace with basis
{le, O)|vac), |1, 0)|vac), | g, 1)|vac), |g, 0} w)}, where |w) de-
notes the one-photon Fock state of the waveguide mode
with frequency w. Hence, the state of the system at any
time has the form C,|g, 0)|vac) + C,|¥¢(r)), where

|We(2)) = B.(t)le, O)|vac) + B,(1)lz, 0)|vac)
+ B.(1)]g, Dlvac) + [‘” dwa,(D)]g, 0)w).
0

Within the Weisskopf-Wigner approximation, the equation
of motion for the resonant Raman process in the interaction
picture can be derived as

B. = —Q*()B,/2. (1a)
B = +Q0B./2 + ginBe (1b)
Be=—YBc/2 ~ gewBy — V2K ey (1) (lc)

= +YBe/2 — geaBr — V2K agy (1), (1d)

where y = 27|k|?> gives the cavity damping rate, and
a;, (1) = fdwaw(to)e*"("’*’”f)’/\/ﬁ_w with fy — —oco and
agu(t) = fdwaw(tl)e*"(‘”*“’f)’/\/Z_W with 7, — +o0 are
the incoming and outgoing pulse of the photon in the
quantum channel, respectively. The quantum fluctuation
caused by the quantum channel is on the order of y/w, <
1 and, thus, the Weisskopf-Wigner approximation is well
justified here, though it can be shown to be unnecessary.
In the process of mapping the spin qubit to the photon
qubit, there is no incoming photon, so the initial conditions
are ain([) = O’ BC(IO) = O, BE(ZO) = 1’ and BI(ZO) =0.In
the driven quantum evolution, the amplitude is coherently

transferred through the pathway: ,882»3 ,jﬁrv ﬁC—wa. Three
features make the design of the evolution possible:
(i) From Egs. (1c) and (1d), the cavity mode coefficient
B. is a direct map of the photon pulse shape, B, =
oy SN0/ (v27K), where the normalized photon pulse
shape @, and the average photon fraction sin’f may be
arbitrary specified, and the trion state coefficient is given
by B, = (=Bc = ¥Bc/2)/gcay- (ii) The amplitude of B, is
given by the normalization condition and its phase can be
expressed from Eq. (1) as
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d _ B+ yB/2> d
E arg(ﬁe) - |gcav|2|,3€|2 dt arg(ﬁc + 7186/2)

~ 181218 arg(B). @)

(iii) The controlling laser pulse {)(¢) can thus be expressed
in terms of the cavity mode . and the spin 3, analytically
from Eq. (1b),
9 — gzavﬁc _ Bc + 730/2 (3)
2 Be gcav Be
At the remote future #; — +o0o, the photon emission pro-
cess is completed, i.e., B.(t;) = B.(t;) =0, so B.(f}) =
e'? cos@ with the controllable phase ¢ independent of the
initial superposition [see Eq. (2)].
When the full Raman transition is completed, § = /2
and B,(z;) = 0. Thus, the spin qubit is mapped onto the
flying qubit by the transformation

(C,lg) + C.le)) ® Ivacy>lg) ® [Cylvac) + C,lou)]
“4)

The mapping operation also functions as a deterministic
generation of a single-photon wave packet with any desired
pulse shape @,,, and average photon number |C,|?.

The Raman process at the receiving node is basically the
time reversal of the above sending process. The incoming
photon pulse a;,(f) can be arbitrarily specified provided
that it is smooth enough, and the photon is absorbed
without reflection. As the spin state converted from the
photon state can be read out nondestructively [20], the
receiving node can also act as an efficient photon detector
which measures the photon number state given the photon
pulse shape is known.

The Raman cycle at the sending node can also be
controlled such that 8 < 7r/2. The initial state |e) ® |vac)
is transformed into an entangled state of the stationary spin
and the flying photon and the mapping process at the
receiving node will just produce a nonlocally entangled
state of the two spins by the transformation

Q, . .
le)i1g), ® [vac)—e'® cosble)|g), ® |vac) + sinflg);lg),

Q . .
® |@ou)—Le’® cosble);|g), + sinblg)le),] ® |vac).
(5)

The  entanglement  entropy  —cos’flog,cos’6 —
sin’flog,sin’f can be set any value between O and 1
depending on the rotating angle 6. Although Egs. (lc)
and (1d) contain terms which yield exponential depen-
dence on time, they are time reversible with each other.
Thus, contrary to the usual view of a continuum being a
source of dissipation and decoherence, the controlled gen-
eral swap between a spin qubit and a photon wave packet
qubit is actually a reversible quantum operation. It follows
that, by proper design of the driven term ()(¢) at each node,

entanglement operation between two distant spin qubits
mediated by a photon continuum is possible.

The error of the quantum operations described above is
estimated in terms of fidelity by numerical simulations
including the undesired nonresonant dynamics and un-
avoidable decoherence. The main source of decoherence
is the trion decay by spontaneous emission and the cavity
mode leakage other than the dynamics accounted above.
The fiber loss and the spin relaxation are negligible on the
time scale of 100 ps and the distance scale of 1 cm of
relevance here. The trion decay rate, based on experiment
[21], is set at I' = 3 weV, and the intrinsic loss rate of a
high-Q cavity excluding coupling to the dot and the fiber is
assumed to be vy, =0.1 ueV (corresponding to a
Q factor ~ 107). The cavity-fiber tunneling rate is chosen
to be ¥ = 0.2 meV and the dot-cavity coupling constant
Zeav = 0.1 meV. The remaining sources of error are the
nonresonant excitation of the multiphoton states and AC
Stark shift of the energy levels. The latter induces a deter-
ministic phase drift between |g) and |e), which is indepen-
dent of the coefficients C,(,) as the two excitation pathways
starting, respectively, from |g) and |e) are independent of
each other [see Fig. 1(b)], and thus can be compensated by
a single-qubit operation. Leakage out of the qubit subspace
by the nonresonant excitation to multiphoton states is
greatly suppressed by a 1 meV Zeeman splitting (at less
than 10 T magnetic field for InAs dots), which is much
larger than the Rabi frequency and the cavity-dot coupling.

We present in Fig. 2 the simulation result of mapping a
spin state to a flying photon wave packet with the pulse
shape targeted as a superposition of two sech functions as
aldl () = sech(yt/6 + 5) + 0.5sech(yt/6 —5),  with
normalization understood. The fidelity of the photon pulse
generation [{@!%¥|a )| = 0.9912. Because of the non-
adiabatic optical pumping and dot-cavity coupling, the
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FIG. 2. Generation of a double sech photon pulse. (a) Real part
of the dimensionless amplitude of the simulated photon pulse
(solid line) as a function of the dimensionless time yz/2. The
deviation from the target pulse is not visible. (b) Imaginary part
of the simulated pulse (solid line) and the target pulse (dashed
line). (c) Phase drift of the state |g, 0). (d) Rabi frequency of the
control laser.
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TABLE I. Merits of entanglement creation with various pho-
ton pulse shape, normalization understood. géﬁ, = (0.1 meV and
v12 = 0.2 meV.

_ ¥R 1+tanh(yt/8) 1 —tanh(yt/8)
a(t) SeCh(%[) exp( % cot:h(yty/[()) expE‘;lztzj//;ZS)
Fidelity 0.9912 0.9908 0.9906
E(pqui) 09995 0.9995 0.9994
Preax 0.0173 0.0182 0.0184

whole mapping process can be completed within 300 ps.
The simulation of the photon absorption process shows an
overall fidelity greater than 0.99 as well.

We have compared the merits among different target
photon pulse shapes for various network operations. The
fast diminishing tails of the Gaussian pulse tend to require
a higher peak value of )(#) than the exponential tails of the
sech pulse and, thus, cause more nonresonant excitations
(i.e., undesired dynamics) than the latter. On the other
hand, deviation from the target shape at the tail region of
the photon pulse has a negligible effect on the fidelity of
interface operations as compared to nonresonant excita-
tion; thus tuning down €)(¢) at the tail region can make the
Gaussian pulse more efficient for achieving fidelity. Table I
shows the results of a comparative study of the merits of
the photon pulse in the sech shape, the Gaussian, and an
asymmetric shape with sech on the rise and Gaussian on
the fall, mediating entanglement of two spin qubits to the
Bell state ¢'®|g),|e), + |e);|g),. The merits calculated are
the fidelity, the entanglement of formation E(pqyp;) in the
subspace of the two spin qubits, and the probability of
leakage out of this subspace, Pju.

In the preceding analysis, exact knowledge of the cou-
pling strengths, g..., ¥, and (z), is assumed. Table IT
shows the effect of the unknown errors in the various
parameters on the fidelity of entanglement to ¢’?|g),|e), +
le)ilg), and transfer of the |g) + |e) state both with the
photon pulse shape sech(%’). Our system shows a surprising
robustness: 10% errors on g.., v, or |(7)| reduce the
fidelity by less than 1%. )(¢) can also have unknown phase
error due to laser fluctuation which can be considered static
in the time scale of our operation. What matters in two
node operations is the relative phase between )(z) and
Q,(zr — 7) where 7 is the propagation delay. This property
enables us to protect network function by a delayed phase
locking of the control field at the two nodes. Laser phase
fluctuation will then induce no effect on the state transfer
or swap and the entanglement creation scheme.

In summary, controllable and high-fidelity quantum op-
erations for stationary spin and flying photon qubits, based
on a cavity-assisted Raman process, are shown to be theo-
retically feasible with solid-state elements including
charged quantum dots, microspheres (or microcavities),
and waveguides (or fibers). The control scheme presented

TABLE II. Effect of errors in coupling parameters on the
fidelity of entanglement and of state transfer.

no error 10% g error 10% vy error 10% ()(t) error

Entangle 0.9912 0.9872 0.9894 0.9862
Transfer 0.9901 0.9870 0.9891 0.9879

may be applied to systems in very different parameter
regimes, e.g., ions trapped in cavity [22], with the require-
ment of node identity removed, greatly saving the resour-
ces to implement the quantum network. The exact solution
also allows learning studies on the system parameters
while the intrinsic robustness against unknown parameter
errors paves the way for further exploration of quantum
feedback control [23,24] for this system.
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