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Natural Multiparticle Entanglement in a Fermi Gas
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We investigate multipartite entanglement in a noninteracting fermion gas, as a function of fermion
separation, starting from the many particle fermion density matrix. We prove that all multiparticle
entanglement can be built only out of two-fermion entanglement. Although from the Pauli exclusion
principle we would always expect entanglement to decrease with fermion distance, we surprisingly find
the opposite effect for certain fermion configurations. The von Neumann entropy is found to be
proportional to the volume for a large number of particles even when they are arbitrarily close to each
other. We will illustrate our results using different configurations of two, three, and four fermions at zero
temperature although all our results can be applied to any temperature and any number of particles.
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Introduction.—Quantum entanglement plays a crucial
role in quantum mechanics, and is extensively used in
quantum information. However, it is only recently that
researchers have started to investigate entanglement in
systems containing a large number of particles. This is of
fundamental importance because entanglement was found
to be relevant not only in microscopic systems, but also on
a macroscopic scale [1,2]. Multipartite entanglement
seems to play an important role in condensed matter sys-
tems, and might be the key ingredient to the solution of
unresolved physical problems such as high temperature
superconductivity [3]. In this work we investigate multi-
partite entanglement in a noninteracting Fermi gas.
Bipartite entanglement in this simple quantum system
has already been shown to be fully characterized by the
exchange integral due to the antisymmetry of the wave
function [4–6].

In this Letter we will show that all multiparticle entan-
glement can be built only from bipartite entanglement.
This is a significant result because it shows that a complete
description of quantum correlations at all levels is possible
in a realistic many body system such as a noninteracting
Fermi gas. We show that the n-particle density matrix can
be written as a sum of the completely mixed state and a
mixture of all possible two-fermion antisymmetrized wave
functions. We use entanglement witnesses to illustrate that
genuine tripartite entanglement does not exist in this sys-
tem, in agreement with our previous expansion of the
density matrix. We then investigate bipartite entanglement
for three and four fermions for different fermion configu-
rations. This entanglement is quantified using the negativ-
ity [7]. Finally we show that for a large number of fermions
the entropy is always proportional to this number (which in
turn is proportional to the volume of the system), indepen-
dently of the fermion distance. For a small number of
particles and small fermion separation the entropy is
smaller than this number (volume). This clearly establishes
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the fact that entanglement of a noninteracting Fermi gas
can be treated like any other macroscopic physical quantity
and that it can be related to other macroscopic observables
such as the volume of the gas or number density. Any mean
field theory ignoring entanglement when describing mac-
roscopic effects in many body systems is therefore unlikely
to be successful even when, remarkably, the constituents of
the system are noninteracting as in our case.

Density matrix.—We consider a many fermion system
with a fixed number of particles and a density matrix �.
The elements of the reduced density matrices for
1; 2; 3 . . . n particles labeled by �1; �2; �3 . . .�n respec-
tively are given by [8]:

h1j�1j1
0i� h�y�10���1�i

h12j�2j1
020i� h�y�20��y�10���1���2�i

h123j�3j1
02030i� h�y�30��y�20��y�10���1���2���3�i

h1.. .nj�nj1
0 . . .n0i� h�y�n0��y��n	1�0� . . .��n	1���n�i

where 1 
 �r1; �1�, r1 is the position vector and �1 �"; # is
the spin of the fermion. The average is given by h. . .i �
Trf� . . .g. For the sake of simplicity all our results are
illustrated at zero temperature, where � � j�0ih�0j, with
j�0i �

QkF
k cyk;�jvaci equals the ground state of the Fermi

system. The cyk;� is the creation operator that creates an
electron of momentum k and spin �. The Fermi momen-
tum is denoted by kF and the vacuum state is jvaci. The �
are the field operators and obey the usual fermion anti-
commutation relations f�y

�0
1
�r01�;��1

�r1�g�	�0
1;�1

	�r1	

r01�.
After a somewhat lengthy but straightforward calcula-

tion we arrive at a form for the density matrix for n
particles which is particularly useful to investigate entan-
glement:
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FIG. 1. The negativity N�2;13� is plotted for fermion 2 moving
from fermion 1 to fermion 3. This corresponds to the text values
i � 1, j � 3, k � 2. The distance between 1 and 3 is fixed to
xmax � 5. This is a dimensionless number.
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�n �

�
1	

X
ij

pij

�
I
2n

�
X
ij

pijj�
	
ij ih�

	
ij j �

I
2n	2 (1)

where j�	
ij i � 1=

���
2

p
�j "#i 	 j #"i� is the maximally en-

tangled singlet state of the pair ij. The sum runs over all
the pairs ij. The probabilities pij are functions of the
relative distances between all pairs. As an example, we
write down the density matrix for the two and three particle
case:

�2 � p
I
4
� �1	 p�j�	ih�	j

�3 � �1	 p12 	 p13 	 p23�
I
8
� p12j�

	
12ih�

	
12j �

I
2

� p13j�
	
13ih�

	
13j �

I
2
� p23j�

	
23ih�

	
23j �

I
2

(2)

where p � �2	 2f�r�2�=�2	 f�r�2� and f�r� � j1�x�=x,
with the Bessel function j1�x� � �sinx	 x cosx�=x2 and
x � kFr. The relative distance between the fermion pair is
denoted by r. The function f�r� is one for r � 0 and zero
for large r. For three fermions, we have three different pairs
and for the pair ij: pij � �	f2ij � fijfikfjk�=�	2� f2ij �
f2ik � f2jk 	 fijfikfjk�. The function fij is a function of the
relative distance between fermion i and j only. Note that
the probabilities pij can be calculated for any number of
particles.

Entanglement.—The Peres-Horodecki criterion is the
condition for the existence of entanglement in the two-
particle case [9]. In our earlier work, we found this to imply
that f�r�2 > 1

2 . This means that two electrons are entangled
if the relative distance between them is smaller than 1:8=kF
for T � 0 [6]. Two fermions are maximally entangled if
they are at the same position. This is because of the Pauli
exclusion principle. In general, since the overall state must
be antisymmetric, if the spatial wave functions fully over-
lap and thus are symmetric, then the spins must be anti-
symmetrized. The fermions must, therefore, be in the
maximally entangled spin singlet state j�	i. We will
show that such two-particle entanglement is also the
main building block for multiparticle entanglement. In
order to illustrate this behavior we will now consider
entanglement in systems containing three fermions.

Tripartite entanglement.—From the decomposition of
the density matrix it is clear that no genuine tripartite
entanglement exists. We now formally show this using
the method of entanglement witnesses. These are observ-
ables which (by our convention) have a positive expecta-
tion value for all separable states, and a negative
expectation value for some entangled states, i.e., entangle-
ment exists if Trf��3��g< 0, where � is the witness [10].
It has been shown that there are only two different classes
of tripartite entanglement, which are represented by the
jGHZi � 1=

���
2

p
�j """i � j ###i� and jW3i�1=

���
3

p
�j "#"i�

j #""i�j ""#i� states [10]. The corresponding witnesses are
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defined as: �GHZ � 1=2	 jGHZihGHZj and �W3
�

2=3	 jW3ihW3j. For both of these witnesses, because 0<
jfijj

2 < 1, the trace of ��3�� cannot be negative. This
confirms that genuine tripartite entanglement does not exist
in the ideal Fermi gas.

Bipartite entanglement.—We will now investigate if
there is entanglement between two groups of fermions.
One group contains fermion i and the other group the
fermion pair jk. As a measure of entanglement we use
the negativity, defined by N�i;jk� � �jj�Ti

3 jj1 	 1�=2, where
jj�Ti

3 jj1 is the trace norm of the partial transpose of the
reduced density matrix �3 of fermion i versus the other two
jk and denote it as N�i;jk�. The trace norm can be evaluated
to be jj�Ti

3 jj1 � 1� 2j�l�lj, where the sum goes over the
negative eigenvalues of the partial transpose. There are
eight eigenvalues in total and only two of them are negative
having the same value �. The negativity is, therefore,
N�i;jk� � 2j�j. Negativity is a good measure of bipartite
entanglement because it is monotonic under local opera-
tions and classical communication and is also equal to zero
if fermion i is not entangled to the fermion pair jk. It
reaches its maximal value of 1=2 if fermion i is maximally
entangled to the fermion pair jk. We will now investigate
different arrangements of three fermions, and investigate
the behavior of negativity.

We first consider three fermions on a straight line. The
distance between the fermion i and the fermion j is fixed.
The remaining fermion k moves from the position of
fermion i, to the position of fermion j, i.e., from x � 0 to
xmax � kFrij, where rij is the relative position between
fermion i and fermion j. At x � 0, fermion k is maximally
entangled to fermion i, and can therefore not be entangled
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to fermion j, independent of rij. The state of the total
system is then �3 � j�	

ikih�
	
ikj �

I
2 . As fermion k moves

away from fermion i we expect the negativity N�k;ij� to first
drop but and then to increase again as fermion k ap-
proaches j. This is confirmed in Fig. 1.

We next consider the case where the fermions are lo-
cated on the edges of an isosceles triangle. Fermions i and j
form the base of the triangle which is fixed. Fermion k is
moved away from the midpoint of the base. The entangle-
ment negativity N�k;ij� and N�i;jk� for this scenario are
plotted in Fig. 2. The entanglement N�k;ij� monotonically
decreases as k moves away from ij because the effect of
antisymmetrization becomes weaker with the distance
(dashed line in Fig. 2). The entanglement negativity
N�i;jk� (solid line in Fig. 2) initially follows the same trend
as N�k;ij� for exactly the same reason. Surprisingly however,
the entanglement N�i;jk�, after reaching its minimum value,
starts to increase and then reaches its saturation value. The
reason for this is the following. When fermion k is further
away from i and j than the distance between fermion i and
j itself, the effect of antisymmetrization between i and j on
entanglement is larger than the effect of antisymmetriza-
tion between i and k. If then the distance is further in-
creased, the position of fermion k has a vanishingly small
role on entanglement. The three particle density matrix
then becomes: �3 � �2 � I=2, where �2 is the reduced
density matrix of the pair ij. Note that the minimum of
negativity is reached when the fermions are equally distant
from each other. This is because entanglement is monoga-
mous and each particle has to share entanglement equally
with the other two. This case will now be analyzed in more
detail.
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FIG. 2. The negativities N�2;13� � N�3;12� (solid line), N�1;23� for
an isosceles triangle, for which fermions 2 and 3 form the base
are plotted. Fermion 1 is moving away from the midpoint of the
base. This corresponds to the text values i�2, j � 3, and k � 1.
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We now consider the case when the fermions are sepa-
rated by equal distances. For three particles the fermions
are located on the edges of an equilateral triangle, and for
the four particle case on the edges of an tetrahedron.
Entanglement in this case is plotted in Fig. 3. We start by
putting the fermions in a very small volume of radius ".
Because of the Pauli exclusion principle, only two fermi-
ons can be in the same location. More then two fermions
would mean that at least two quantum numbers are the
same, which is forbidden. As the distance between the
fermions increases, N�i;jkl� <N�l;mn� <N�p;q� at all dis-
tances, because the entanglement is shared between the
fermion pairs, and the more fermions are involved the less
entanglement we gain. All of this can be generalized to an
arbitrary number of fermions. If the fermions are all in a
small volume of radius ", then the state is in an equal
mixture of all the singlet states of the pairs, and only the
second term of (1) survives. Higher order entanglement
does exist, but the Pauli exclusion principle forbids maxi-
mally entangled states other then the j�	i. This is the
reason why we do not have jGHZi or jW3i states in the
system. If the fermions are further away from each other
the first term in (1) becomes important and the total state
�n becomes even less entangled. The interplay between the
two terms in the density matrix is also important when we
want to calculate the total entropy of the fermions S�n� �
	Trf�n ln�ng. We study this quantity, because at T � 0 it
quantifies the amount of entanglement between the mea-
sured electrons and the remaining unmeasured electrons.

Entropy.—We now investigate the von Neumann en-
tropy of the Fermi system as a function of fermion distance
as shown in Fig. 4.

At T � 0, the system is in a pure state. For the two-
particle case, the entropy is zero for x � 0 because the two
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FIG. 3. The negativities N�1;2�, N�1;23� (solid line) and N�1;234�
(dashed line) are plotted. This corresponds to text values p; q �
1; 2, l; mn � 1; 23, and i; jkl � 1; 234.
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FIG. 4. The von Neumann entropy S2, S3 (solid line), S4
(dashed line) is plotted as a function of fermion distance. This
behavior is analytically explained in the text.
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fermions are in the pure singlet state. It then increases to
two as the distance increases. This behavior is also ob-
served for three particles as well as four. In these cases it
does not start at zero because we cannot have more then
two fermions in the same location, but again reaches the
value of three (four) as the distance increases. For large n,
the entropy becomes nearly equal to the number of parti-
cles even for very small distances. For a large particle
system at low constant density, the reduced density matrix
of the system is then given by �n � I=2n and the entropy is
S�n� � n ln2 which is proportional to the volume of the
system. For a dense system the density matrix is given by:
�n � �ijj�

	
ij ih�

	
ij j � I=2n	2. The entropy of this state is

also proportional to the number of fermions for large n.
Only if the number of fermions is small and if they are very
close, the Pauli exclusion principle prevents the entropy
from being proportional to the number of fermions. This
can be explained as follows: If all the states are equally
likely the entropy is the logarithm of the number of all
possible configurations of these states. Since we have a
system of fermions they have to be antisymmetrized and
therefore this number is equal to the total number of states
2n, minus the number of symmetric states �n� 1�. The
entropy therefore is
03050
S�n� � ln�2n 	 �n� 1��: (3)

We can see a complete agreement between this formula
and the entropy in Fig. 4 for x � 0. It is also clear that if the
number of fermions is large, then the first term in the
entropy dominates, giving us the previous result of entropy
being proportional to the volume of the system.

Conclusion.—We have presented a form of the density
matrix for n fermions in an ideal Fermi gas which is
particularly useful to investigate entanglement in this sys-
tem. We then showed that no genuine multipartite entan-
glement exists, and that all multipartite entanglement can
be built only from the bipartite entanglement between
fermion pairs. Lastly, we showed that the entropy of a
large Fermi gas is always proportional to its volume,
independent of fermion distance. It is only for a small
number of fermions and small distances that the entropy
is smaller than this number (volume). We believe that our
work shows that multipartite entanglement in complex
macroscopic systems can be studied and even fully under-
stood with the existing techniques of quantum information.
We hope that this stimulates other studies in similar direc-
tions of solid state and condensed matter systems.
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