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Quantum phases and phase transitions of weakly to strongly interacting bosonic atoms in deep to
shallow optical lattices are described by a single multiorbital mean-field approach in real space. For
weakly interacting bosons in one dimension, the critical value of the superfluid to Mott insulator (MI)
transition found is in excellent agreement with many-body treatments of the Bose-Hubbard model. For
strongly interacting bosons, (i) additional MI phases appear, for which two (or more) atoms residing in
each site undergo a Tonks-Girardeau-like transition and localize, and (ii) on-site excitation becomes the
excitation lowest in energy. Experimental implications are discussed.
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Loading and manipulating cold bosonic atoms in optical
lattices is a fascinating, rapidly growing branch of cold-
atom physics; see, e.g., Refs. [1-3]. In a pioneering ex-
periment, Greiner et al. [1] have demonstrated the quantum
phase transition from the superfluid (SF) to Mott insulator
(MI) phase of a cold gas of 8’Rb atoms trapped by a three-
dimensional simple-cubic-type optical lattice. More re-
cently, the SF to MI transition has been demonstrated in
an effective one-dimensional (1D) optical lattice [2]. In the
SF phase, which has no excitation gap, atoms are free to
move throughout the lattice and are associated with a
coherent state of matter. The MI phase amounts for com-
mensurate filling of the optical lattice and has an excitation
gap associated with moving an atom from one site to an
occupied neighboring site. The SF to MI transition (in deep
optical lattices) involves weakly interacting bosons and is
well described by the Bose-Hubbard model [4—-6] which
assumes all bosons to occupy the lowest band of the lattice.
Recently, the so-called Tonks-Girardeau gas, i.e., the
strongly interacting regime, was realized in an optical
lattice [3]. Generally, as the interaction between atoms
increases—in deep as well as in shallow optical latti-
ces—additional possibilities open up for the trapped cold
atoms which can now occupy higher bands.

Our purpose in this Letter is to explore quantum phases
and excitations of cold bosonic atoms in optical lattices not
accounted for so far. We will present an approach which is
able to treat weakly to strongly interacting bosons in the
entire range of deep to shallow optical lattices. To peruse
the above, we would like to describe cold bosonic atoms in
optical lattices directly in real space, i.e., to provide their
spatial wave function. Specifically, we will adopt our re-
cently introduced multiorbital mean field [7,8] to cold
bosonic atoms in optical lattices. As we shall see below,
already for the standard case of weakly interacting atoms
we found a promising and intriguing result concerning the
critical value of the SF to MI transition in one dimension.
Although our approach is mean field, it finds this value to
be 3.855(7), in excellent agreement with density matrix
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renormalization group and other many-body calculations;
see Ref. [9], and references therein.

Our starting point is the many-body Hamiltonian de-
scribing N bosons in an optical lattice, H = Eflzl[f(ri) +
V(r)] + Ef\;j:lU(r,» —1;). Here, r; is the coordinate of
the ith particle, 7(r;) and V(r;) stand for the kinetic energy
and optical lattice potential, respectively, and U(r; — ;)
describes the pairwise contact interaction between the ith
and jth atoms.

As mentioned above, we are going to obtain a real space,
wave function picture of the quantum state of cold atoms in
the optical lattice. How are we going to achieve this? To
this end, we attach an orbital to each of the N atoms. The
simplest choice is the Gross-Pitaevskii approach, for which
all bosons reside in the same orbital. There can be, how-
ever, many other situations for bosons [7]. Generally, we
may take n; bosons to reside in one orbital, ¢(r), n,
bosons to reside in a second orbital, ¢,(r), and so on,
distributing the N atoms among n,4 > 1 orthogonal orbi-
tals. At the other end of the Gross-Pitaevskii approach lies
the situation where each boson in the optical lattice resides
in a different orbital, i.e., n,y, = N. More formally, the
multiorbital mean-field wave function for N interacting
bosons is the following single configuration wave function

[71:
W(ry,ry,...,ry) = 3{¢1(r1)¢2(r2) T GDN(I'N)}, (N

where S is the symmetrization operator. Note that the
Gross-Pitaevskii approach is a specific case of Eq. (1)
where all orbitals are alike [7,8]. In order to find the ground
state of the many-bosonic system with the ansatz (1), one
has to minimize the energy (W|H|W¥) with respect to ¥
[Eq. (1)]. This results in a set of ng,y coupled, nonlinear
equations for the n.y orbitals that have to be solved self-
consistently. To fulfill the variational principle, we should
search for the energy minimum of H with respect to (i) the
shape of the self-consistent orbitals ¢;(r), (ii) the occupa-
tion of each orbital, and (iii) the number n,,, of different
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orbitals. The larger variational space of the multiorbital
approach allows us to describe the underlining physics of
various phenomena. Of course, more demanding many-
body methods, such as diffusion Monte Carlo simulations
[10], would also be valuable.

The multiorbital mean-field wave function (1) has been
successfully employed and has led us to the prediction of
macroscopic fragmentation of repulsive condensates in the
ground and excited states; see Ref. [8]. In macroscopic
fragmentation, a large number of atoms reside in a small
number of orbitals. Specifically, two or three orbitals were
considered in Ref. [8] within Eq. (1). What we have found
out is that, when the number of orbitals is of the order of N
(number of atoms), the multiorbital ansatz (1) is physically
very relevant for various situations of atoms in optical
lattices; see below. At the same time, we can now handle
practically any number of atoms and sites in optical latti-
ces. Specifically here, we employ more than
100 bosons/sites; i.e., the number of orbitals is ngy >
100. The numerical implementation employs the discrete
variable representation method [11] and no assumptions
are made a priori as to the shape of the n.y, orbitals which
are obtained self-consistently.

In this work, we concentrate on 1D optical lattices,
V(x) = Vysin®(kx), where k is the wave vector. As usual,
periodic boundary conditions are assumed. Thus we em-
ploy a supercell of a large number N,, of potential wells
(unit cells). The strength of the interparticle interaction is
expressed via the dimensionless parameter y = mg/h’n,
where m is the mass of the atoms, 7 is the density, and g is
related to the scattering length and the transverse harmonic
confinement [12]. Optical potential depths, V,, and ener-
gies will be expressed in terms of the recoil energy, Ex =
n*k?/2m.

‘We begin our study with bosons in a deep optical lattice,
Vo = 25ER, with commensurate filling of one atom per
lattice site. This familiar SF to MI phase transition is to
serve as a test tool for our multiorbital mean-field ap-
proach. The MI phase in this system will be denoted by
MI(1). In practice, we minimized the energy of the
Hamiltonian H with respect to the ansatz (1). For weakly
interacting bosons we found that all bosons reside in one
orbital, namely, that the Gross-Pitaevskii approach pro-
vides the lowest energy. This state, naturally, corresponds
to the SF phase. For stronger interactions, the situation for
the ground state changes completely: each and every atom
occupies now a different self-consistent, orthogonal orbi-
tal. This, as we shall see below, is the MI(1) phase. In other
words, we employ the ansatz (1) with n,y, = N equations
to describe the MI(1) phase. In Fig. 1(a), we plot the energy
per particle & of the SF and MI(1) states as a function of the
dimensionless parameter y for N,, = 102 sites. The cross-
ing of the energy curves indicates the critical value for
which the phase transition from the SF to the MI(1) phase
occurs. It is found to be vy, = 0.007777(3). We have nu-
merical evidence that 7y, scales as 1/n.,, with increasing
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FIG. 1 (color online). Quantum phase transition from the SF to
MI(1) phase and corresponding orbitals ¢ and densities p
(shifted lower curves) for weakly interacting bosons in optical
lattice with Vy = 25E, and N,, = 102 sites. Orbitals and den-
sities are normalized (on the segment of length 277) and are
plotted against the site index i. The optical lattice is illustrated
for guidance by the background sinusoidal curve. (a) The phase
transition is described by the intersection of the SF and MI(1)
energy per particle curves, &, which occurs at 7y.=
0.007777(3). (b) Orbital and density of the SF phase for y =
0.007 760 02. (c) Orbitals and density of the MI(1) phase for y =
0.007 777 31, slightly above 7y, (shown are 3 adjacent orbitals).
(d) Orbitals and density of the MI(1) phase for strongly interact-
ing bosons in shallower optical lattice with Vy, = Ep for y =
3.491, slightly above the corresponding y,. = 3.4(9) (shown are
3 adjacent orbitals).

lattice sites, meaning that we can safely extrapolate vy, to
the thermodynamic limit. It is instructive to translate the
value of vy, to the “language’ of the Bose-Hubbard model,
i.e., express the corresponding U/J (on-site interaction
divided by hopping) in terms of V,/Eg and vy; see [6].
The resulting critical value corresponding to our 7y, is
readily found to be (U/J). = 3.855(7) = 2 X 1.927(8).
This value obtained with our multiorbital mean-field ap-
proach is in excellent agreement with density matrix re-
normalization group and other many-body calculations of
the 1D Bose-Hubbard model; see Ref. [9], and references
therein. The reason is that our multiorbital wave functions
are very good approximations for the exact many-body
wave functions of the SF and MI(1) phases when y < 1
and Vy > Ej. We remind in this context that the mean-
field critical value of the 1D Bose-Hubbard model is
(U/J), =2 X 5.8, which is rather off the many-body
value; see [5], and references therein.

How do the corresponding wave functions (orbitals)
look? In Fig. 1(b) we show the SF phase orbital, i.e., the
corresponding Gross-Pitaevskii orbital. It, of course, ex-
tends throughout the optical lattice, representing a coherent
state. In Fig. 1(c) a few adjacent orbitals describing the
MI(1) phase are shown. We remind that these orbitals are
obtained self-consistently as the solution of a coupled
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system of n,4, = 102 nonlinear equations, following an-
satz (1). Namely, no preliminary assumptions are made
regarding their shape. Because of the translational symme-
try, a set of equivalent orbitals is obtained, each centered at
one lattice site. It can be proved that, for vanishing inter-
particle interaction, these orbitals approach the lowest-
band Wannier functions. This suggests a very appealing
physical meaning to the ansatz (1). It describes the MI(1)
phase with orbitals that can be interpreted as boson-dressed
Wannier functions.

With a successful mean-field real-space description of
the standard SF to MI transition, we set in to exploit more
advantages of our method. The next system we considered
is the SF to MI(1) phase transition in shallow optical
lattices (here we took V, = Ej), i.e., for a system of
strongly interacting bosons. For shallow optical lattices
the MI(1) orbitals become more diffusive, as can be seen
in Fig. 1(d), and extend beyond the next-nearest neighbor
sites. Accordingly, the corresponding spatial density p
becomes flatter—compare Figs. 1(c) and 1(d). Also, notice
the negative values of the orbitals in the nearest neighbor
wells which ensure their orthogonality. For V, = Ej, the
intersection of the SF and MI(1) energy curves occurs at
v. = 3.4(9). It is instructive to find this mean-field value to
agree very well with that found by Biichler ef al. in the limit
Vo — 0 by employing the sine-Gordon problem [6].

Aiming at exploring more physical situations in optical
lattices, we considered another scenario of commensurate
filling—with two atoms per lattice site. For weak interac-
tion, the ground state is, of course, the SF phase where all
bosons reside in a single orbital. As the interaction in-
creases, a phase transition to the MI phase, which will be
denoted here by MI(2), occurs. We obtained the MI(2)
phase as the ground state of the system by ansatz (1).
Technically, this is done by determining the n.4, = N/2
self-consistent orbitals minimizing the energy with 2 bo-
sons per orbital. As v is further increased, it passes another
critical value, and we find that the ground state of the
system underwent a second, new phase transition [see
Fig. 2(a)]. Now, there are still two atoms in each site but
they reside in different orbitals, in contrast to the MI(2)
phase where they reside in the same orbital. We denote this
new MI phase by MI(1,1) (for obvious reasons). In real
space, the two atoms in each site localize at the borders of
the site, leading to minima in the spatial density.

Figures 2(b) and 2(c) present the wave functions (orbi-
tals) of the standard and new MI phases, MI(2) and
MI(1,1), respectively. The appearance of on-site minima
in the corresponding spatial density is a clear fingerprint of
the new MI phase, differentiating it from the standard
MI(2) quantum phase. Experimentally, Bragg diffraction
techniques should provide a direct tool to distinguish be-
tween the two MI phases. We have calculated the momen-
tum distributions of the MI(2) and MI(1,1) phases and
fount that, in comparison to MI(2), the momentum profile
of MI(1,1) is lower and broader. Consequently, momentum
distribution measurements should provide an additional
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FIG. 2 (color online). Quantum phase transition from the
MI(2) to MI(1,1) phase and corresponding orbitals ¢ and den-
sities p (shifted lower curves) for weakly interacting bosons in
optical lattice with V; = 25ER and N,, = 51 sites. Orbitals and
densities are normalized (on the segment of length 27r) and are
plotted against the site index i. The optical lattice is illustrated
for guidance by the background sinusoidal curve. (a) The phase
transition is described by the intersection of the MI(2) and
MI(1,1) energy per particle curves, &, which occurs at y,. =
12.7(6). (b) Orbitals and density of the MI(2) phase for y =
12.7418 (shown are 3 adjacent orbitals). (c) Orbitals and density
of the MI(1,1) phase for y = 12.7609, slightly above 7. (shown
are 6 adjacent orbitals). Notice the on-site minima in the density
of the MI(1,1) phase in comparison to the standard MI(2) phase.

tool to differentiate between MI(2) and MI(1,1). The tran-
sition of MI(2) to the quantum phase MI(1,1) when the
interaction is increased can be interpreted as an on-site
transition to the Tonks-Girardeau regime of the MI(2)
phase. The results obtained so far are straightforwardly
extended to more MI phases with more atoms per site. For
instance, the MI phase with three atoms per lattice site,
which we denote by MI(3), would eventually end up as the
new MI phase, MI(1,1,1), where all three atoms reside in
different orbitals, and two on-site minima now appear in
the spatial density.

So far, we successfully applied the ansatz (1) to the
ground state of atoms in optical lattices. This has been
obtained by solving a coupled system of n.; nonlinear
equations for the orbitals. It is natural to ask whether the
ansatz (1) can also provide physical information on self-
consistent excited states. We remind in this respect that
ansatz (1) boils down to the Gross-Pitaevskii approach if
all orbitals are alike [7,8]. The self-consistent excited states
of the latter—solitons and vortices—are well known and
have been observed for condensates; see, e.g., Ref. [13],
and references therein. In optical lattices, the self-
consistent excited states are the nonlinear Bloch bands,
the lowest of which is quadratic in k and has zero gap [14].
By definition, in the self-consistent excited states of the
Gross-Pitaevskii approach, all bosons reside in the same
higher-energy orbital. In contrast, the flexibility of putting
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FIG. 3 (color online). On-site self-consistent excited state of
the MI(1) phase in optical lattice with V, = 25E and N,, = 102
sites for strongly interacting bosons, y = 76.64. Orbitals and
density (shifted lower curve) are normalized (on the segment of
length 277) and are plotted against the site index i. The optical
lattice is illustrated for guidance by the background sinusoidal
curve. Shown are the excitation site and 4 adjacent orbitals. For
the present vy, this is the excitation lowest in energy, accommo-
dating the energy gap of the MI(1) phase calculated here to be

0.90\/4V,Ex.

atoms in different orbitals suggests that Eq. (1) can also be
employed to describe many self-consistent excited states.

In the following, we would like to employ ansatz (1) to
understand the nature of the gap in the MI phase of strongly
interacting atoms in optical lattices. For this, we recall that
for weakly interacting bosons in the MI(1) phase the
lowest-in-energy excitation is obtained by moving one
boson from its site to a neighboring site; see, e.g.,
Refs. [1,5]. But what happens when the interaction be-
tween bosons increases, entering even deeper into the MI
regime? In that case, the energy of this excited state
increases substantially due to the on-site interaction be-
tween the two bosons. We therefore employed ansatz (1)
and searched for the low-lying self-consistent excited
states of the system. We found many such states, where,
e.g., two atoms reside in a single delocalized orbital, or
where two atoms in the same site occupy different orbitals
localized at the borders of this site [similarly to Fig. 2(c)].
For sufficiently strong interaction, the excitation lowest in
energy does not accommodate two bosons in the same site
or orbital. Rather, it emerges as an on-site excitation; see
Fig. 3. It is instructive to compare the energy of the self-
consistent on-site excitation with the excitation gap of a

single well in the harmonic approximation given by
V4VoER [5]. For the parameters used here, y = 76.64,
Vo = 25ER, and N,, = 102, we find this value to be
0.90,/4VER, slightly lower than the bare-well gap. The
difference comes from the strong repulsion between atoms,
which lowers the gap in comparison to the interaction-free
problem.

In conclusion, weakly to strongly interacting cold bo-
sonic atoms in deep to shallow optical lattices have been
described by a multiorbital mean-field approach in real
space, giving the wave function of cold atoms in the lattice.
With it, we described quantum phases and phase transitions
of cold bosonic atoms in 1D optical lattices not accounted
for so far. As the interparticle interaction is increased, on-
site excitation becomes the excitation lowest in energy.
The employment of self-consistent mean-field orbitals
has been shown to provide an accurate value of the SF to
MI transition in one dimension. The findings demonstrate
the wide potential of our multiorbital ansatz for cold bo-
sonic atoms and motivate concrete studies in higher di-
mensions. Finally, the predictions obtained are within
reach of (effective) interaction strengths presently em-
ployed in experiments, where values up to y = 200 have
been realized [3]. In addition, if needed, Feshbach-
resonance techniques can be employed to further increase
scattering lengths.
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